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Abstract

This paper examines the effects that pricing errors in the underlying asset have on options prices,
their greeks, and their implied risk neutral densities. Pricing errors can be viewed as a random
proportional transaction cost. When pricing errors are information-unrelated, options prices are
unambiguously higher than the Black-Scholes case and increasing in the pricing error variance.
Hedging volatility is higher and the optimal exercise price for American put options is decreased.
The option implied risk-neutral density and option Greeks are materially affected, which leads to
suboptimal risk management and hedging without accounting for the pricing errors.
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1. Introduction

Separate large bodies of literature have recently emerged with one examining optimal
trading rules (and hedging) with transaction costs (Atmaz and Basak, 2019; Clewlow and Hodges,
1997; Grandits and Schachinger, 2001; Guéant and Pu, 2017; Kabanov and Safarian, 1997; Kallsen
and Muhle-Karbe, 2015; Leland, 1985; Lepinette, 2012; Nguyen and Pergamenshchikov, 2017)
and with the other identifying and filtering pricing error variances out of observed asset price return
variances to recover the uncorrupted volatility matrix (Jacod, Li, and Zheng, 2017; Piccotti, 2020;
Zhang, 2006; Zhang, Mykland, and Ait-Sahalia, 2005). Generally, however, these two strings of
literature have not been connected to examine the effect that pricing errors in the underlying asset

has on options pricing and their associated hedging strategy. | seek to fill this gap in the literature.

Pricing errors can be viewed as a random proportional transaction cost. The seminal work
of Leland (1985) shows that an alternative appropriately chosen volatility can be substituted into
the Black-Scholes option pricing formula, which accounts for the transaction costs. Further, as an
implication of this, transaction costs can be estimated from the observed Black-Scholes prices.? |
derive a similar result, with respect to pricing error variances, where a suitably chosen volatility
can be substituted into the Black-Scholes formula, which accounts for the pricing errors. In this
manner, my adjustment to the variance plugged into the standard Black-Scholes formula is similar
in nature to that of Leland (1985) to address fixed positive transaction costs and to that of Lo and

Wang (1995) to address predictability in the underlying asset price return.

Similar to the case with fixed transactions costs, options prices are higher in my modified

Black-Scholes case than in the standard Black-Scholes case to account for the increased cost of

2 Ofek, Richardson, and Whitelaw (2004) show that violations to put-call parity are strongly related to short sale
constraints. As a result, violations to put-call parity could also be used to back out the magnitude of trading costs.
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replicating the option payoff. There are two important dissimilarities between pricing errors and
transaction costs, however. First, prior studies have generally treated the transaction cost as a
constant (function of trading periods), whereas pricing errors are variable. Second, transaction
costs are strictly positive, whereas pricing errors can be positive or negative. As a result, in some
cases, the trader purchases the asset for cheaper than its true price and in other cases, the trader
purchases the asset more expensively than its true price. In this respect, pricing errors represent
variable positive and negative transaction costs. Pricing errors in the underlying asset lead to an
unhedgable variance, where extant evidence by Garleanu, Pedersen, and Poteshman (2009) has
shown that option prices are affected by demand pressures in an amount proportional to the
variance of the unhedgeable part of the option. Pricing errors during trading hours in the
underlying asset prices may also contain explanatory power for the finding by Jones and Shemesh

(2018) that stock return variance is mispriced in options over weekend periods.

| advance the option pricing literature by deriving closed-form option prices, their
respective hedging arguments, and associated greeks, when the underlying asset price contains
pricing errors. | assume a linear additive pricing error in log prices, which contains an information-
related component and an information-unrelated component. If the information-related component
is equal to 0 (there is no correlation between pricing errors and the underlying true asset price
innovation), then the call option on an underlying asset with pricing errors is always more
expensive than the standard Black-Scholes call option valuation. In the presence of information-
related pricing errors, whether a call option price is more or less valuable than the standard Black-
Scholes call option price depends critically on the correlation coefficient between pricing error
innovations and the true efficient price innovations. This also generally holds for the call option

greeks. Specifically, if the correlation is less than minus one-half of the ratio of pricing error



volatility to true price return volatility (p € [—;’—;, 1], see Corollary 1), then the modified call

option price is more valuable than the standard Black-Scholes call option price. The percentage
pricing errors between the modified call option prices and the standard Black-Scholes options
prices are greatest for out-of-the money (OTM) call options, while deep in-the-money (ITM) call

options are little affected.

The option greeks are also critically affected when the underlying asset price contains
pricing errors. As a result, using the standard Black-Scholes greeks leads to erroneous risk-
management and hedging in these cases. In the simple call option case where the pricing error
does not contain an information-related component, delta is lower for near ITM strikes and higher
for near OTM strikes, gamma is lower for ATM strikes, theta is lower for ATM strikes, vega is
lower for ATM strikes and higher both for near ITM and OTM strikes, and rho is lower for near
ITM strikes and higher for near OTM strikes. The biases contained in the greeks also depend on
the time-to-maturity of the option. Biases in gamma and theta diminish as option time-to-maturity
increases, while biases in vega and rho diminish as option time-to-maturity converges to 0. The
biases inherent in the option delta are little affected by option time-to-maturity, except for in the

case of deep OTM and deep ITM options.

In addition to the standard Black-Scholes first-order greeks, two new greeks exist when the
underlying asset contains pricing errors: the option’s sensitivity to pricing error volatility (E) and
the option’s sensitivity to the correlation between the pricing error innovation and the true price
innovation (P, the option price’s sensitivity to the information-related pricing error component).
In both cases, E and P are greatest ATM and dissipate to 0 symmetrically as the option is further

ITM or OTM. This pattern suggests that ATM options’ notional values are the most effected by



pricing errors in the underlying asset (in contrast, percentage errors in the option price relative to

the standard Black-Scholes price are greatest for OTM options).

Finally, | extend the base model to its modular representation, which can accommodate
stochastic factors in the underlying asset (stochastic volatility, stochastic interest rates, and jJumps),
to the effects of pricing errors on American option prices, to the effects that pricing errors have on
the risk-neutral density, and to the effects that pricing errors have on the value of a firm’s equity

(priced in a Merton, 1974 model framework).

The remainder of the paper is organized as follows. Section 2 presents the option pricing

model. Section 3 extends the model and discusses applications of the model. Section 4 concludes.

2. Model

2.1. Preliminaries

Consider a complete standard financial market M in a Black-Scholes world.® There is a
risk-free strictly positive bank account B with its innovations and the innovations in the n’th asset’s

true price S,, given by:

dB(t) = rB(t)dt, 1)
is'l((tg) = a,dt + b, dW, (¢t), @

3 M is standard and complete if (i) it is viable (there are no arbitrage opportunities), (ii) the number of assets in the
market N is equal to the dimension of the D-dimensional driving Brownian motions, (iii) the D-dimensional price of

risk 6 is finite almost surely ([ 1 (¢)]12dt < =), (iv) and the following is a martingale, Z(t) = exp {— f, 6'(s)ds —
It 2
Ly leCs)I1Pds).



where r is the (constant) risk-free rate, a,, is the (constant) per annum expected return on the asset,
b,, is the (constant) per annum standard deviation of the asset’s returns, and dW,,(t) is the
innovation to a standard Brownian motion. The usual filtration FW = o{W:0<s < T} is
assumed. The true price in unobservable, however, and only the price, which is corrupted by

microstructure noise is observable:
Y, (t) = S, (t)esn®, 3)

where &,(t) is the pricing error, which has a distribution dependent on the stochastic differential
equation (SDE) that is assumed to govern its evolution de, (t). Therefore, the financial market
described by Equations (1)-(3) differs from the traditional Black-Scholes market only by the

presence of the pricing error.
Let the general SDE for the pricing error be:
den(t) = ap (e, (t), t)dt + by, dW, (1), 4)

and let p,,_ be the correlation between dS,, and de,,. The correlated pricing error structure here is

similar in nature to the permanent-transitory pricing error used by Hasbrouck (1993), which is
extended to a multi-asset framework by De Jong and Schotman (2010).* Using such a mean-
reversion model as Equation (4) for the pricing errors is capable of accommodating autocorrelated
pricing errors as has been found in Jacod, Li, and Zheng (2017). Note that the volatility parameters
in both Equation (2) and Equation (4) can be made constants, even if they are time varying

parameters by using the average volatilities over the life of the option (for example, b, =

%for b,(w)du and b, = lfor b (wW)du, b,(t) and b, .(t) can be determined by the solution of

T

4 Vanden (2008) also shows that information quality and informed trading affects option prices.
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the stochastic differential equation used to describe their evolutions). Therefore, | assume that

they are time invariant.

To prevent the pricing error (t) from straying too far away from 0, a mean-reverting
stochastic process can be chosen to describe it. For example, suppose that the pricing error is
described by a Vasicek (1977) process, de,(t) = ky, (5115 - e(t)) dt + b, dW, _(t), which
permits both positive and negative pricing errors to arise, where k,_> 0 is the mean-reversion
intensity coefficient, {,,_is the long-run mean pricing error, b,,_is the volatility of the pricing error,
and dW,_(t) can be correlated with true price’s driving Brownian motion dW,(t) with a

correlation coefficient of p,, . An intuitive example parameterization within this framework for

Equation (4) isif k,_ = i. Then the pricing error fully reverts to 0 each dt-period and is normally

distributed around the true price S, (t) with a mean of 0 and a variance of%b,%gdt.

Note that the multiplicative pricing error term is lognormally distributed, which is similar
in form to the Dothan (1978) model and dissimilar to the exponential Vasicek model. The

following proposition describes the evolution of the observed price process {Y;,(t)}o<t<r-

Proposition 1 Assume that the true underlying asset price process is described by Equation (2)
and that the pricing error process is described by Equation (4). The observed price process

{Y,(t):0 <t < T} evolves according to:

2
Ne

b (5)
=@wu%@gao+2

dY,(t)
Yo (t)

+ bnbngpns> dt + by, dW, (t)

with the solution



b2 —b? 6
Y, (t) = Y,(0) exp [(an + % + bnbngpng> t ©)

t

by, Wy, (6) + f ans(sn(u),u)dul

0

where dW,, (t) = b,dW,(t) + b, dW, (t), b;, = b} + b}._+ 2b,by p..
Proof: See Appendix A.

Proposition 1 shows that the observed price Y,,(t) follows a geometric Brownian motion, which

is adjusted by the cumulative compounded effects of pricing errors.

2.2. Hedging in the presence of pricing errors

The method for solving for the hedging strategy follows that of the original Black-Scholes
problem. Consider a portfolio that is short a contingent claim and long H (t) units of the underlying
asset. Therefore, the problem for the contingent claim writer is to exactly hedge his contingent
claim obligation. Precisely, the contingent claim writer wants to find a value ¥ (0) such that when

invested in a self-financing trading strategy, yields the contingent claim payoff V (Y, t):
0=—(V(,t) = V(Y,0)) + Hy s ¥y, (7
where H, Y, denotes the stochastic integral, H,eY, & fot H,(u)dY,(u). The SDE
corresponding to Equation (7) is:

0 =—dV(t) + H,(t)dY,(t)

1

> b;, Vi (t)VY(t)Y(t)) dt + (Hy(8) = Vy)dY, (0)

0 = (_Vf



. (8)
0= (—Vt - Eb%yYnz OVyore

b2
+(Hp () = Vy(p))Yu (8 <an + an, (e,(0),8) + % + bnbngpng>> dt

+ (Hn(t) - VY(t))Yn(t)bnydey(t);

2%v

WD By choosing H,(t) = Vy(, the

v ov
where V,=—- Vye) = e and Vyye) =

corresponding portfolio gain process becomes deterministic (risk-free) and as such is required to
earn the risk-free rate, in the absence of arbitrage. Setting the deterministic gain of the risk-free
terms in Equation (8) equal to the risk-free deterministic gain on the position —V(Y,t) +

Vv Yo (t) gives a modified Black-Scholes equation:

1 9
Ve + 5 bi, Yi (OVyoyve + VyYn () =7V (Y,t) = 0. ®)

Equation (9) is the Black-Scholes equation with the underlying asset being Y, in place of S,, and

with the variance of the underlying asset increased.

2.3. Contingent claim valuation solution

Consider the Green function approach to solving the PDE in Equation (9). Lety =InY
and V(y,7) = e "*w(y, ), where T = T — t is the remaining time-to-maturity for the contingent
claim. Substituting y and e ""*w(y, ) into Equation (9) in place of Y and V, respectively, allows

the PDE to be re-written as:



ow b;, %w ( b,

w202 2

ow (10)
»)

oy’
where the initial condition is the contingent claim payoff. In the case of a European call option,
for example, the initial condition is w(y,0) = max(e” — X, 0), where X is the strike price. The

infinite dimension Green function of Equation (10) is:

b2 ? (11)
()

2b3 T

p(y,7;8) =

1
———eXp
’an%yr
satisfying the initial condition lilgl+ ¢y, ;&) = 8(y — &), where §(-) is the Dirac delta function
T

representing a unit impulse at the point &, and 7 — 07 represents converging to 0 from the right.
Therefore, the price of a contingent claim V today, by the fundamental theorem of asset pricing, is

its discounted expected future payoff:

w(y,t)=e™" f w(&, 0o (v, T; )dé, (12)

where the payoff of the contingent claim being valued is substituted in for w(¢, 0).

Proposition 2 Assume that the current observed price equals the true price ¥,, = S,,. Consider
the European call option with a payoff of c(y, T) = max(e¥ — X, 0). Substituting this payoff into

Equation (12) for w and evaluating gives the modified BSM call option price:
E(Sp,7) = S, N(dy) — e "X N(d,), (13)

p(Sn, 1) = e T°XN(d;) — S,N(d;) (14)



where N(x) = f_xoo N'(&)dé denotes the standard normal cumulative distribution function, N’ (x)

is the probability density of the standard normal distribution, and where

b} 15
ln57”+<r+%>r (15)

) d2=d1_ ’b%YT'
/b%YT

Qa
[y
|

and where bi, = b + bi_+ 2b, by, py_.
Proof: See Appendix A.

Proposition 2 suggests that when there are pricing errors in the underlying asset, the BSM
option price can be modified by increasing the variance of the underlying asset, which is similar
to the method proposed in Leland (1985) to accommodate fixed transactions costs and by Lo and
Wang (1995) to accommodate return predictability in the underlying asset. As a result, the hedging
volatility is b,,. This is the Black-Scholes implied volatility that equates the Black-Scholes price
to the option price prevailing with pricing errors in the underlying asset.> Using the volatility
parameter b,, would lead to either over hedging or under hedging. Whether the European call

option price is greater than or less than the Black-Scholes price depends on the correlation p,,_

between underlying true asset value changes and pricing error changes as Corollary 1 outlines.

As is apparent from the call option value’s form being the same as the standard Black-
Scholes option pricing model, a multiplicative pricing error as considered in Equation (3) cannot
explain the implied volatility smile. The implied volatility curve remains flat, but at a higher level

than b,,. However, if the underlying asset contains pricing errors, then inverting the Black-Scholes

> See Renault and Touzi (1996) for a discussion of the hedging ratio under stochastic volatility.
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model gives an implied volatility for the underlying stock, which is erroneous (see Hentschel,
2003), since the resulting volatility estimate also contains the effect of pricing error volatility.
Therefore, the primary mechanism through which pricing errors in the underlying asset affect
European options trading is through changing the option Greeks, hedging requirements, risk-
neutral density. In Section 3.3. , | provide evidence, which shows that pricing errors in the

underlying asset also affect the smooth pasting condition for American put options.

Corollary 1 Assume that the current observed price equals the true price Y,, = S,,. Consider the

European call option with a payoff of c(y,t) = max(e” — X,0). Then,

c—cBS=0 forpngel

bn, (16)
2b,,’

b\
~ o BS _ _ Ng
¢—c® <0 forp, € I 1, an)

Proof: The option price is a bijective function of variance and b, < b;; when p,,_ € [—1, - %).

Figure 1 presents the surface of differences between European call option prices when the
underlying asset has pricing errors and the respective Black-Scholes European call option prices
for the case where p,, . > — S—;‘j. Call prices, when the underlying asset has pricing errors are higher
than Black-Scholes prices for options that are near-the-money with the difference in prices and the
range of moneyness affected both increasing in time-to-maturity. When p,,_ < —%‘i, the mirror

image is observed, with call prices being lower than the Black-Scholes call price. Similarly, a the

European put price is relatively more expensive than the Black-Scholes put price when p,_ >

b . b . . ..
—f and vice versa when p,, < —ﬁ. Therefore, the nature of the information-related pricing

n n

errors is critical to determining relative value of options on underlying assets with pricing errors
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. . . . b
versus the respective Black-Scholes prices. If adverse selection costs are high, p,_ > —f and
n

observed option prices are higher than those implied by the Black-Scholes model. In fact, as long
as information frictions and trading barriers are sufficiently small, observed options prices are

larger than Black-Scholes call prices.
[Insert Figure 1 about here]

Table 1 presents the modified Black-Scholes call option prices as a function of both the
pricing error volatility (b, ) and the pricing error innovation’s correlation (p,_) with innovations
in the true underlying asset price (). Call option prices are increasing in both b,_as well as in
the p,,, since an increase in each of these variables increases the volatility of the observed

underlying asset price (Y) innovations. Following from Corollary 1, the call option price is

relatively cheap compared to the standard Black-Scholes call option price when p,,_ € [—1, — %)

. . by, - .
and relatively expensive when p, € [—j, 1]. As the pricing error volatility increases, the

modified Black-Scholes option price is higher for all levels of p,,_ since blim pn, € [-1,1] €

—0
bng

by, . . . L o
[—j, 1]. It is also apparent that the percentage revision in call option price is increasing in

moneyness (from ITM to OTM), which shows that very large percentage pricing errors in option
prices can arise if the Black-Scholes model is used erroneously, when the underlying asset contains

pricing errors.
[Insert Table 1 about here]

The option Greeks associated with the call and put options prices in Equations (13)-(15)

are presented in Proposition 3.
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Proposition 3 Assume that the current observed price equals the true price ¥,, = S,,. Consider

the European call and put option prices in Equations (13)-(15). The associated options greeks

are:
dc ap 17
B =35 = N(d). 8, =50 =N(d) - a7)
0 — dc S b, 1 _%? XeTN(d ) (18)
R A 2)
ap Spbn, 1 52
0, = -5 = 2\/_Y\/_e +1Xe T°N(—d,),
a2V 1 1 _at (19)
F = —2 = FC = Fp = 0 2
aS‘n Snbny\/; V27T
av b +b 1 di 20
’U:ﬁ:vczvp — ngpns n Sn\/_e_Tl\/? ( )
n J 2byby pn, + b3 + b2, VAT
dc ~ d - 21
Pe = Fe XTe‘”N(dz), Pp = a—f = —Xre‘”N(—dz) (21)
dc b +b . 22
EC = FTA — npns Ng SnN,(dl)\/? ( )
fte \/ 2by by _pp, + b3 + bZ,
0 b, b . 23
p =0 _ b g N(d)VE )

9pn, \/anbngpng + b2 + b2,

Proof: See Appendix A.

Figure 2 presents the two new Greeks that are introduced, when the underlying asset

contains pricing errors and for the case where p, > — ﬁ. E., the sensitivity of the call price to

the standard deviation of the pricing error, is plotted in Panel (a) and P,, the sensitivity of the call

price to the correlation coefficient of the pricing error with the underlying true price change dS
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and the pricing error innovation de, is plotted in Panel (b). For both E. and P, the partial
derivatives are positive and are the greatest for ATM options. The sensitivities are also positively

related to the time-to-maturity across the surface.
[Insert Figure 2 about here]

Figure 3 plots the surfaces of the differences between the European call option Greeks (for
the p,, > — % case), in the presence of pricing errors in the underlying asset, and the Greeks of

the Black-Scholes call option price. In Panel (a) and Panel (e), A, and p., respectively, are
decreased for close ITM options and increased for close OTM options. Panels (b) and (d),
respectively, show that I, and v, are lower for ATM options and higher for moderate deviations
in moneyness from ATM when the underlying asset has pricing errors versus the Black-Scholes
case without pricing errors. Finally, Panel (c) shows that ©, is lower for ATM options when the
underlying asset has pricing errors versus the Black-Scholes case. Together, the results in Figure
3 provide evidence that pricing errors in the underlying asset have important risk management and

hedging implications for options.
[Insert Figure 3 about here]

Table 2-Table 6 present the modified Black-Scholes call option greeks as a function of the
underlying asset’s pricing error volatility and the pricing error’s correlation with the true
underlying asset’s price innovations. Table 2 contains the call option deltas (A.) from Equation
(17). ITM deltas are decreasing in the volatility of the pricing error, while OTM deltas are
increasing in it. Likewise, holding the volatility of the pricing error fixed, ITM (OTM) deltas are

decreasing (increasing) in the correlation p,,_. Since there is also a bijective relationship between

14



option delta and variance. p, = —:ﬁ is the correlation coefficient value at which point the
standard Black-Scholes call option delta is equal to the modified Black-Scholes option delta in
Equation (17). As a result, using the standard Black-Scholes delta with p,,_ > —:ﬁ causes ITM
(OTM) call (put) options to be underhedged and OTM (ITM) call (put) options to be overhedged.

. by
The opposite results when p,, < — j.

[Insert Table 2 about here]

Table 3 contains the modified call option gammas (I;) from Equation (19). Gammas do
not have a monotonic relationship with the volatility of the pricing errors, which is suggested from
Panel (b) of Figure 3. While ATM gammas are decreasing in the volatility of the pricing error,
ITM gammas and OTM gammas have no monotonic relationship with the pricing error volatility.
There is also not a monotonic relationship between option gammas and the correlation coefficient

pn, between the underlying asset’s pricing error innovations and underlying true asset price

innovations. The following proposition gives the value for p,, , at which pint I" is maximized.

Proposition 4 Consider the option prices given in Proposition 2 and the respective greeks in

Proposition 3. Then, the value of T, as a function of p,,_, reaches its maximum when:

. —b3b,, — 2T b,b,, — b,b}, (24)
Pne = 2b2b3.

-1 [p252 2 2 2 S\, 2 21 (S\2 >
271 |bZbZ +bZr2T2 b3 +2b27T In(3)b3 +b3 In(3) b3,
+ .

2b3b7,

or

Proof: Set the partial derivative 5 equal to 0 and solve for p,,_.

png
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If py@xT" € [—1,1], then there is an interior maximum (which is always the case). Deep ITM and
deep OTM call options gammas, however, have a monotonic positive relationship with the
correlation coefficient p,,_ for p,_ € [—1,1] and the maximum is reached at the boundary of p,, =

1.
[Insert Table 3 about here]

Modified call option thetas are presented in Table 4. Modified call option thetas are
negatively related to the volatility of the pricing error as well as negatively related to the correlation
coefficient p,_. The modified call option theta is less than the standard call option theta when

by . . . .. .
Pn, > — j. As a result, market-neutral options strategies (as well as strategies aiming to profit

n

from small market moves) will be placed at the wrong location along the strike price line, if the

standard Black-Scholes theta is used, rather than the modified ones in Equation (18).
[Insert Table 4 about here]

Table 5 presents the modified vega from Equation (20). Option vegas when the underlying
asset contains pricing errors are negatively related to the pricing error volatility. In fact, when
pricing errors are present, the option vega can become negative when there is a sufficiently large
negative correlation between the true underlying asset’s price innovations and the pricing error
innovations. While the relationship between the modified call option vega and the correlation

coefficient p,,_ is positive for ITM and OTM options, the relationship is a U-shaped pattern for
ATM call options, when the pricing error volatility is small (Panel A). The regions for p,,_for at

which the modified vega is negative, 0, and positive are given in Corollary 2.
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Corollary 2 Consider the option prices given in Proposition 2 and the respective greeks in

Proposition 3. Then,

b 25
v<0 forp, <——, (25)
& bn£
b
v=0 forp, = _b_:g'
by,
v>0 forp, >——.
& bn£
Proof: From Equation (20), v = 0 when b,,_p,,_ + b, = 0. Solving this for p,,_gives p,_ = —;—”.

Similar to the other greeks, the modified vega can be greater than or less than the standard

Black-Scholes vega. However, there is no analytic solution for the value of p,,_, which sets the

modified vega equal to the standard vega.
[Insert Table 5 about here]

Table 6 presents the modified call option rho greek values in Equation (21). As with the

A, T, and ©,. modified call option greeks, the modified call option p, crosses the standard Black-

Scholes call option p when p,, = —%. Whether the modified rho is greater than or less than the

standard rho depends on option moneyness, however. For p,_ < —%, ITM and ATM modified

call rhos are greater than the standard Black-Scholes ones, OTM modified call option rhos are less

than the standard Black-Scholes ones (see Panel (e) of Figure 3). The moneyness level at which

the sign of a"’pﬁ switches sign is also dependent on the volatility of the pricing error, with the level
ne
% at which this occurs and the pricing error volatility being positively related.

[Insert Table 6 about here]
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Table 7 and Table 8 present the two new call option greeks that are unique to the option
price when there are pricing errors (E. and P,, respectively). Both E, and P, are increasing in the
volatility of the pricing error and neither E. nor P. have a monotonic relationship with the
correlation coefficient p,,_. The relationship between E. and p,,_is a J-pattern and the relation

0E P
< and —¢
apng apng

between P, and p,, is an inverted J-pattern. While the polynomial forms for both

are complicated, each is a cubic function in p,,_, which allows the unique value for p,,_to be solved

for, which minimizes (maximizes) E. (P,).

[Insert Table 7 and Table 8 about here]

3. Model extensions and applications

In this section, | extend the Black-Scholes framework to show how pricing errors in the

underlying asset affect options prices with various exercise policies and payoff structures.

3.1.  Risk neutral density

Consider the risk neutral density (RND) for the underlying asset as derived from European
call options. It is well known that the RND f(X), in the Black-Scholes framework, for the

rT aZE(X) — N,(&Z)

underlying asset S, is F'(X) = f(X) = ™" — 2= = =

and that the cumulative density

function is F(X) =1 — N(&z), where d, has been substituted in place of d, to account for the

effect that pricing errors have on options prices (see Proposition 2). Figure 4 Panel (a) presents

the RNDs derived from Black-Scholes European call option prices for annualized pricing error
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standard deviations of 0%, 10%, 25%, and 50%. The presence of pricing errors in the underlying
asset biases the RND to have a more dispersed distribution. Panel (b) presents the cumulative
RND function as a function of the pricing error and underlying asset price innovation correlation
coefficient. The RND becomes more dispersed as p,,_ increases as well. Panels (c) and (d) plot
the respective cumulative RND functions. As a result of the biases created by pricing errors in the
underlying asset, out of the money calls and puts are relatively more expensive, when the

underlying asset has pricing errors.

[Insert Figure 4 about here]

3.2.  General European option pricing model with stochastic factors

The option pricing model can be generalized simply within a modular pricing framework.
In this section, | extend the option pricing model to its modular representation, which can
accommodate stochastic factors in the true underlying asset, such as stochastic volatility, stochastic
interest rates, and jumps. Following the derivations included in Zhu (2010), the general modular
form for the European call option price, with pricing errors included is outlined in the following

proposition.

Proposition 5 Assume that the current observed price equals the true price ¥,,(0) = S,,. Consider

the European call option with a payoff of c(y, t) = max(e¥ — X,0). Then,

¢ =SF,(InY(T) > InX) — XB(0, T)F,(In Y(T) > InX), (26)

where
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© —ipInX 27
Fj(lnY(T)>lnX)=%+%f iri(fj(dﬂe ” >d¢ “n
0

for
fi(9) = e PImSEV(9) x £71 (@) x £ (9) x f (), j = 1,2. (28)

where i solves m? = 1, R(-) denotes the real part of a complex-valued number, and Cj denotes

that b, . is used as the volatility parameter in place of b,,.
Proof: See Appendix A.

InY(0) = S, since at time 0, the pricing error is assumed to be equal to 0 and each of the
characteristic functions f;*(¢) for a € {SV, S1, PJ, L]} is with respect to the true underlying asset
price S. ijV (¢) is the characteristic function associated with stochastic volatility (example
models include Heston, 1993; the double square root process of Longstaff, 1989; Schobel and

Zhu, 1999, among others), fjs’ (¢) is the characteristic function associated with stochastic
interest rates (example models include Cox, Ingersoll, and Ross, 1985; Longstaff, 1989, among
others), fjp J(¢) is the characteristic functions associated with Poisson jumps (example models
include Cox, Ross, and Rubenstein, 1979; Merton, 1976, among others), and f;"/ (¢) is the

characteristic function associated with Lévy jumps (example models include Barndorff-Nielsen
and Shephard, 2001; Madan, Carr, and Chang, 1998; among others). See Zhu (2010) for the

characteristic functions for a variety of different model specifications.

3.3.  American options
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Consider American options on a non-dividend paying underlying asset. Panel (a) of Figure
5 shows that is continues to be suboptimal to exercise an American call option early. Panel (b),
however, shows that for American put options, the smooth pasting condition and optimal exercise
price are affected by pricing errors in the underlying asset. The optimal exercise boundary is
decreasing in the size of the pricing error variance and as an implication of this, the early exercise
premium embedded in American options is decreasing in the underlying asset’s pricing error

variance. This is stated in the following proposition.

Proposition 6 Assume that the current observed price equals the true price ¥,,(0) = S,, and that
{v,,(t)} evolves according to Equation (5). The American put option is exercised optimally with a
payoff at time ¢ of §,(y(t),7) = X — e¥® for Y,,(t) < Y,5(t). Then, in the limits as T — 0* and

as T — oo, it is the case that:

b 29
Yi(@) <S5;(1), pn, €| e 1 (29)
2b,
* * bns
Y, (1) = S5 (1), Pn, = —E ,

b
Vi@ > Sp(@), pn, €|-1, -2
2b,,

where S;(t) is the value for the true underlying asset for which the American put option is
exercised optimally in the absence of pricing errors; that is, p,(s(t),7) = X — e5® for S,,(¢) <

Sx(t).
Proof: See Appendix A.

[Insert Figure 5 about here]
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3.4.  Firm equity value and pricing error volatility

Since a firm’s equity value can be viewed as a call option (Merton, 1974) with the firm’s
face value of defaultable debt as the strike price, the effect that the presence of pricing errors in a
firm’s stock has on the firm’s equity value can be easily examined. Let D,, > 0 denote the firm’s
face value of risky debt (zero-coupon debt so that no coupon payments are made prior to maturity),
which is has a term remaining of . Denote by A,, the firm’s asset value, which has a per annum
volatility equal to b, 4. If the firm does not make the full payment due at time T (the case where
A, (T) < D,), then the debt holders immediately take over the company and the residual equity
claim is worth 0. Note that early optimal default is not allowed in this model. Then, since equity

is limited liability, the firm’s equity value is E,,(4,, T) = max(4,(T) — D,,,0).

Proposition 7 Assume that the current observed price equals the true price Y,,(0) = S,, and that
a firm with current assets of A,, has a zero-coupon face value of debt outstanding in the amount

of D,, with a term of . Then,

- b 30
E, (A, 1) > E,(A,,T) forpE€ <— e ,1] (30)

2b,,

- b, 1
E,(A,,7) <E,(A,7) forpe|-1——=
2b,,

where E,, is the firm’s value of equity, when its stock price contains pricing errors, and E,, is the

firm’s value equity, when its underlying stock price does not contain pricing errors.
Proof: See Appendix A.

Intuitively, Proposition 7 shows that if the pricing error increases the volatility of the

firm’s observed equity value (p € (— %, 1]), which is a transfer of welfare away from the firm’s
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creditors to its shareholders, then the value of the firm’s equity is higher. Conversely, a pricing

error which is sufficiently negatively correlated with the firm’s underlying true stock price (p €
by, . . . .
[—1, — #]), which transfers welfare away from the firm’s shareholders to its creditors, results in
n

a lower equity value for the firm. Merton model probabilities of default (N(—d,)) are presented
in Table 9. Consistent with Proposition 7, the firm’s probability of default in the presence of

pricing errors in the underlying stock price is greater than the standard Black-Scholes (Merton,
1974) case, when p,,_ € (—%, 1]. The probability of default is monotonically increasing in the

by,

- - . ]
volatility of the pricing error, since P

> 0. The probability of default, however, is not

Png
monotonically increasing in the firm’s current equity level (4,,(0) — D). This result is due to the
relation between the firm’s asset volatility, the firm’s stock return volatility, equity delta, and debt-

O,

1g .
6An) s (see Equation (A. 33)).

to-equity ratio, which given by b, , = b, (

[Insert Table 9 about here]

While Proposition 7 follows immediately from option pricing theory, the result also
conforms to recent findings in the corporate finance literature with respect to the real effects that
stock price efficiency has on firm value. Fang, Noe, and Tice (2009) find that firms’ values are
increasing in their stock liquidity, which is consistent with Proposition 7 when the price impact
of trade is close to O; that is, when p ~ 0. Within a cost of capital context, one possible
interpretation for this finding is that a pricing error which makes a firm’s stock price more volatile
allows the firm to opportunistically raise capital and invest at a lower cost of capital as found in

Mufioz (2013).
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3.5.  Other closed-form option prices

The option pricing arguments presented in Sections 2.1. to 2.3. can be easily extended to
options on dividend-paying assets, options on foreign currency, and to exchange options, for
example. Assume that the continuously paid constant (for simplicity) yield of an asset is a function
of its true price, rather than its observed price, and the dividend process does not contain a pricing

error. That is, the wealth process of holding one unit of the asset at its true price is S,(t) =

entS (t). Then, in this case, the observed asset price is Y, (t) = S, (t)ednt+en(®),

The following 3 cases of options on a dividend paying asset, options on foreign currency,®

and exchange options can be easily derived utilizing Margrabe’s formula’ (Margrabe, 1978).

Proposition 8 Assume that the current observed price equals the true price Y,, = S, forn = 1,2.
Consider the European option with a payoff of V(y, 1) = max(w[e” — X],0), where w = 1 for a

call option and w = —1 for a put option. Then,

V(y,1,w) = e"qlTSlN(wdl)w — e‘QZTSzN(chZ)w, (31)

where:

I q, = r and S, = X for an option on a dividend-paying asset.
ii. q. =71,q, =1", and S, = X for an option on foreign currency, where r is the domestic
risk-free rate and r* is the foreign risk-free rate.

iii. As is for an exchange option.

6 See Garman and Kolhagen (1983) for a derivation of the standard foreign currency option price in the Black-
Scholes framework.

" Also see Fischer (1978).
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S b
1n5—1+<q1—q2 +7Y)T

dl = 2 b%.’: y d~2 = &1 - b}% T,
C C
2 1,1 C12
where b = [1 Cz LG 2] [ 1]
Cl,l = biy = blz + bgl + 2b1b£1p1:€1’ (32)
Ci2 = Cy1 = p12b1by + pe, 6,b¢ be, + P16,01be, + P2, b2, (33)
CZ,Z = bg,Y = b% + bgz + 2b2b€2p2,€2' (34)

Proof: See Appendix A.

4. Conclusion

In this paper, | consider the option pricing problem when the underlying asset contains
pricing errors, which are comprised of both information-unrelated and information-related terms.
Pricing errors can be viewed as a variable proportional transaction tax, which can be positive (a
positive pricing error) or negative (a negative pricing error). As such, the traditional hedging
volatility leads to over or under hedging. | derive the closed-form European options prices along
with their associated greeks and in this framework, options can be priced correctly by increasing
the volatility parameter in the Black-Scholes equation appropriately (Proposition 2). This
modified hedging volatility in the Black-Scholes equation leads to proper hedging of the European
contingent claim. Further, | derive the option sensitivities to the volatility of pricing errors and to
the correlation between the underlying asset’s true price innovation and pricing error innovations

(Proposition 3).
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When pricing errors are purely information-unrelated (uncorrelated with the true
underlying asset value), options prices are unambiguously higher than in the Black-Scholes setting.
When underlying asset pricing errors have an information-related term (correlated with the true
underlying asset value), the options price is greater than or equal to the Black-Scholes case when
the correlation coefficient is sufficiently large (Corollary 1). Finally, as model extensions, | show
how the risk neutral density is affected when the underlying asset contains pricing errors, how the
optimal exercise boundary of American put options is affected (Proposition 6), and | derive the
general form of the model with stochastic factors (Proposition 5), which can accommodate
stochastic volatility, stochastic interest rates, Poisson jumps, and Lévy jumps in the true underlying

asset price.

Appendix A Proofs

Proof of Proposition 1: By It6’s product rule:
dY,(t) = d(S,(£)en®)
= e520ds, () + S, (O)d(e¥®) + dS, (1) d(e*®). (A.- 1)

Apply Itd’s lemma to esn(®;

d(e*n®) = e (a, (,(6), £) + 22) dt + by, AW (1), (A-2)

Then,
dY,(t) = e DS, (t)(andt + b,dWy (1))

Ne

b2
+ S, () (andt + b,dW,(t))esn® [(ang(sn(t). t) + > ) dt
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+by, AW, _(0)]

+ S, () (andt + b,dW, (1))

bZ
x eer® l(ang(gn(t): t) + 12%) de+ bndeng(t)l

2
Ng

dy,(t
n( ) = <an + ang(gn(t); t) +—+ bnbngpn£> dt

Y, (1)

(A.3)

2
+ b, dW,(t) + bnEdeE(t).

The new source of randomness dW,, (t) & b,dW, (t) + b, dW;_(t) can be decomposed into the

sum of 2 independent normally distributed random variables by re-writing dW,,_(t) as dW,, (t) &

Pn, AW, (L) + ’l—pnsdeng(t), where dW,(t) and dZ, (t) are uncorrelated. Therefore,

dey(t) is also normally distributed with a mean of 0 and a variance of:

2
W{dey(t)} =E {[bnde(t) + by, <pn£de(t) + ’1 — Pngzzng(t)ﬂ }
= E {[(bn + by pn, ) AW, (8) + by, /1 — przlstns] }

= E{b3 + 2byb,_pn, + b7 _pa_+ bz (1 —p2.)}
= bj + 2byby_pp, + b7 (A. 4)

Therefore, dW,, () & b, dW, (¢) + b, dW, (t) ~ N (0, b2 + bZ_ + 2b,b,_p,,) and deLét)) can

be re-written as:

2
Ne

2

dY,(t)
Yo (t)

(A.5)

= (an + an, (en(t), ) + 5=+ bnbngpns> dt + by, dW, (t),
where bi, = b;; + b+ 2b,by py,_.
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Next, consider the solution Y, (¢). ApprOX|mate ”( 2 bydlnY (t). Then, by Itd’s lemma,

dInY, (t) = ——=dV,(¢t) — (dv,(®)°

Y, (t) 2 Y2 (t)

2

<an + an, (e,(t), t) + bz

+b bngp,%) dt

1
+ by dWn, (6) = - bi. dt

2 2

_ (an + ay, (e (0), 1) + — ;

Integrating gives:

2 2

oy bnbnspn£> t + by, W, ()

Ng

InY,(t) =InY,(0) + <an + 5

t
+ fo an, (e (W), u)du.

Taking the exponential of both sides of Equation (A. 7) yields the solution:

2 2

bng ny
Y,(t) =Y, (0) exp || a, + — + bpby pn, |t

t

+bp, Wy, (t) + f

an, (e (W), u)dul
0

i bnbngpng> dt + by, dW,, ().

(A.6)

(A.7)

(A.8)

Notice that when ¢,(t) =0 for0 <t < T, Y,,(t) = S,,(¢t), the solution for a standard geometric

Brownian motion.

Proof of Proposition 2: From Equations (11) and (12), the solution for c(y, 1) is:

28

Q.E.D.



c(y,t) =e "w(y,1)

e j w(E, 0)¢(y, 7 £)de

=e exp|— df
InXx bTLY P Zb%YT
b2 2
g
= e—”f § exp|— d§
Inx bnY27T Zb%YT
_ bTZLY 2+
~ o 1 <y+<r—T>T—f>
—e” Xf ex - df
by 2 2b},7
b2 ?
- | L))
— e—rrey+rrj exp|— d
InXx \/bnyzn b ZbYZLYT f
b2
(y+< —%)T—lnX\‘
—e "XN
)
b2 b7
ln57"+<r+%>r ln‘g(—”+<r—%>r
=S N —e T'XN )
n 2b%, T b VT

where y = In S, since the pricing error is assumed to 0 at time 0 (¥,,(0) = S,,(0)e® = S,)

Q.E.D.
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Proof of Proposition 3: First, the new option greeks (E. and P..) and the option vega, which differs
materially in form from the standard Black-Scholes option greeks are derived. The derivations for
the call option greeks are provided and the put option greeks derivations are omitted, but can be

derived by similar methods.

. ac

l. V= m
0 0 - -
TR T [S.N(d;) — Xe ™" N(d,)]

aN(f?l) dd; dby Yo-rt 6N(~Jz) ad, 0by
dd, 0by db, dd, Oby db,

—+vn

abyl oN(d,)ad, ___dN(d,) ad,
n — Xe T ————=

~ ab, dd, 0by dd, 0by
oby . .-
=35, 5oV (d)Vz

bn.p + b ]
- P2 n 5 N'(d VT

\/anbnsp + b2 + b2

i Eo=o
06 0 ) -
— _ -rT
T [S.N(dy) — Xe™"N(d,)]

_ 6N(~&1) dd, dby e aN(~d~2)0d2 dby
" 9d, 0bydby,, dd, 0bydb,

_ Oby a1v(~d“1)ad1 R azv(fiz)@
db, " ad, Oby dd, Oby
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ab -
- WL SaN'(dy V7

b,p+ b -
_ 0T 0ne s N'(dVE
\/anbngp + b2+ b2

_ o¢
0png

ii. P

oc @ - -
[ — — -rT
oon.~ Ion [S.N(d1) — Xe " N(d,)]
_ . 0N(d,)ad, dby - dN(d;) ad, dby
~o"79d, obyop,, ©°  ad, 0bydpy,

_ Oby S, azv(fil)ad1 et 6N(~d2)%
0pn, dd, Oby dd, OJby

db .
B apnyg S (Ve

b,b ~
- =t S,N'(d )V
\/anbnsp + b + b3,

The remaining option greeks do not differ materially in from from the standard Black-
Scholes option greeks. Rather, by, is replace with by, everywhere in the formulas. For

completeness, the derivations are presented (following the derivation procedures in Chen, Lee,

and Shih, 2010) regardless.

. a¢
Iv. A, = a_Sn

a¢

9 - i
T [S,N(d;) — Xe ™*N(d,)]
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~ aN(&l)a_dl_Xe—r‘cMa_&z

= N(d S = ]
(1)+ n ad, 0S, od, 0S8,
= (@) + S8 () e xe (@) e
1 n 1 Snbny\/? 1 X Snbny\/?
o=
ac 0 5 3
— == =[5V (d) + Xe N ()]
aN(dl) 6(11 —rT 3 —-rT aN_(&Z) ad~2
ThTod, gr T XN H X T
2 2
0] e AL L MRS
=—-S5,N'(d - B —rXe N
n 1 b VT any‘l’% 2bp T rXe 2
s by
.S Iny T+7
+Xe 'N'(d;)Ze'" - -
( 1) X bny\/? anyl_% any\/;
b2,
-\ 2 -
= —S,N'(d —rXe™"*N(d
(1) 2 = e N (da)
Spb ~ 3
= 208 N (d) — e TN(E)
vi Io = %g
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. 8¢
vii.  pe =4

0 0 - -
5 = 5, [5aN(d1) — Xe "N (d,)]

_ . oN(dy)ad, I
= Sp ad, -, T Xe *™N(d,) -

-rT7

aN(d,) ad?
o — X
dd, Or

= SN (@) 2+ oxe TN (dy) — Xe TN (d)
ny

ny

- - ~ S
= SN (@) 2+ oxe TN () — Xe N (d) e YT

ny

= 1Xe "*N(d,)
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Proof of Proposition 5: The value today (time 0) of a European call option on Y,, with an

expiration date of T, with stochastic interest rates, is:

(T A. 9
Co = EQ {e Jo r(t)dt(elnY(T) _ elnX) ) 1lnY(T)>lnX} ( )
T
= EQ {e‘fo r()dtolny(7) . 11nY(T)>lnX}

—E® {e_f:r(t)dtelnx : 11nY(T)>1nX};
where E?{-} denotes that the expectation is taken under the risk-neutral measure Q. Let Q, and
Q- denote the changes of numeraire associated with the observed underlying asset price Y (t) and
the zero-coupon bond price B(t,T) = E {exp (— ) tT r(u)du)}, respectively. Then the two Radon-

Nikodym derivatives are:

dQy ., _YWOHO) _ _rpan Y© _ (A. 10)
dQ © OO ‘ Y (0) = g1(8),

dQz . BATHO)  _(t,0)0, BET) _ (A. 11)
@(t) “H@OBO,T) ¢ " ‘ BO.T) 92(0),

where H(t) = exp (fotr(u)du). Since the pricing error factor e¢® is multiplicative, Y (t) is

always positive, which makes it a valid numeraire. The call option value at time O can be re-

written as:

Co = Y(O)[EQl{lln Y(T)>lnX} — B(0, T)XIEQZ{llnY(T)>lnX}
= SFlQl (1ln Y(T)>lnX) - B(O' T)XFZQZ (1ln Y(T)>1nX)r (A' 12)

where F].Qj,j = 1,2 are standard normal cumulative probability distributions and where Y (0) = S.

Taking the Fourier transform of probabilities yields the following characteristic functions for I«"ij:
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f}((p) - ]EQj{eiqblnY(T)}’ j=1, (A. 13)
= IEQ{gj(T)ei‘Pl“Y(T)}
where i is a solution to the equation x2 = 1 (more popularly written as i = vV—1). The density

function for In Y(T) is then the inverse Fourier transform of the characteristic function:

1 ,
q;(InY(T)) = — ij(d))e—lcplnY(T)dd)’ j=12. (A.14)
2r Jg
Using these density functions, the cumulative density functions are
F(nY(®) > InX) = J ¢,(nY())d InY(T)
InX
“ /1 .
=f (— fﬁ(¢)e-l¢lnxd¢)dlny(ﬂ
InXx 2m R
1 ® el
=5 f fi(®) ( j e “””dlnY(T))dcp
2m R InXx
e~idInX (A. 15)

1 1
=§+§J‘Rﬁ'(¢) do,

ip
and the final line, with the appropriate characteristic function f;(¢), is substituted into the second

line of ¢, above to attain the European call option price.

The characteristic function of a sum of independent random variables is equal to the
product of the characteristic functions of each of the random variables. Therefore, to add stochastic
factors into the model is as easy as multiplying the characteristic functions for each the stochastic
factors and then substituting the resulting characteristic function into Equation (A. 15) and then
substituting Equation (A. 15) into Equation (A. 12) (see Chapter 9.2.1 of Zhu, 2010). That is to

say:
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fi(@) = e IMYO SV (9) x £51(¢) x [ (@) x (), j=12,
fi(@) = e ISEV(p) x £71(d) x [ (@) x [ (¢),  j=12 (A. 16)
where InY(0) = In S$(0), since at time 0, the pricing error is assumed to be equal to 0. Each of

the characteristic functions f;*(¢) for a € {SV,SI,PJ,LJ} is with respect to the true underlying

asset price S.

Q.E.D.

Proof of Proposition 6: Normalize, the current time ¢t to 0. The value of an American put option

is given by its maximum value, if exercised anytime at or prior to maturity. That is,

P(¥,(0),7) = sup E¥e " max(X — Y,(0),0)}, (A.17)
0<t*<T

where t* is the stopping time at which the American put option would be optimally exercises,

which is optimized at:

t* = igf{O <u<T:P(Y,(uw),u) = max(X — Y, (u),0)}. (A. 18)

Therefore, the American put option is exercised at the first time its value crosses below the payoff

X =Y, (t) for Y,,(t) < X.

Since the holder of the American put option can invest the proceeds in the amount X at the
risk-free rate, if exercised early, then the early exercise premium is a function of rX. Then, the
current price of an American put option can be decomposed into its European option value plus an

early exercise premium (see Myneni, 1992):
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P(Y,(0),7) = E® {e (X - Yn(o))+} + EQ { f Te TUrX1y ()<x du}, (A 19)
0
=p(S, 1) +€é(S, 1),
where (recall that Y,,(0) = S)
p(S, 1) = E¥e (X — 5)7}, (A. 20)
(A. 21)

T
é(S, T) = ]EQ {f e_ruTlen(u)<X du}
0

The first term on the r.h.s. is given in Proposition 2 and is the modified Black-Scholes put option

price, while the second term can be re-written as:

T Yy (W) A. 22
é(s,7) = f e‘T”f rXy (Y, (w); S)dY, du, ( )
0 0

where y is the transition density for Y,,. Evaluating the above integral gives (see Kwok, 2008 ch.

5.2.3):
T i A.23
é(S,1) = f e " rXN(—d,,)du, (A 23)
0
where
S b;, (A. 24)
e (T‘T §
uz2 — bny\/a

and u is the time elapsed from the current time. Putting the equations together, gives the analytic

price for an American put option on an underlying asset with pricing errors:

P(S,7) =p(S, 1) + fre‘r“ rXN(—d,,)du. (A. 25)
0

Applying the boundary condition P(S*,7) = X — Y,; () gives:
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T
X-Y:()=p(S1)+ f e " rXN(—d,;)du
0

Yo(t) =X —-p(S,1) - f Te-ru rXN(—d,,)du. (A. 26)
0

The optimal exercise price Y,y () can be solved numerically by numerically solving the
integral representing the early exercise premium. Closed-form solutions for Y, (t) do exist in a
Black-Scholes world, however, in the limits as T — 0% and t — oo (see Evans, Kuske, and Keller,

2002, and Kowk, 2008 ch. 5, respectively) and are:

b2 (A.27)
im V(1) = X — Ty
Tll)rgl+ Yy(@) =X —Xb,, |tln <87TTT2>'
lim ¥ (1) = ——x, (A. 28)
T—00 u-—1
where
2 b 2 (A. 29)
_<r_%)— (r-20) + 23,0
U_ =

2 )
bz,

and where b, has been substituted in place of the b,, variable that would prevail in the standard

d lim Yy (1)
Black-Scholes framework without pricing errors in the underlying asset. Since % and
i) 11151 Y (T) . b, -
BT are both negative and b, < by, for p,_€ (— P 1], it is the case that:
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b, (A. 30)
Yi(@) <S5;(1), pn, € <— =, 1]

2b,,
* * bns
Yo () = Sn(T): Pn, = — 2b,,
by
K@ >S50, pn,€[-1-57%)

Q.E.D.

Proof of Proposition 7: Merton shows that in the standard Black-Scholes framework (in the

absence of pricing errors in the firm’s underlying stock price), the value of equity is:

E,(4n, 1) = A,N(dy) — Dpe™™N(d;), (A. 31)
b? A. 32
lng—” + (r + %) T ( )
~ n ~ ~
d bn,NT o B=dimb

where b, , is the volatility of the firm’s assets, which is unobservable.

Jones, Mason, and Rosenfeld (1984), however, show that in the standard Black-Scholes

framework (in the absence of pricing errors in the firm’s underlying stock price), the equity

volatility and asset volatility are related by b,, = b, , %gn—ggi. Re-arranging gives:
A <6En)'1 E,,(0)
" TMN0A,) An(0)
-5 1 E,(0) (A. 33)
~ "N (dy) 4, 0)

Substitute in by, in place of b, to get the relationship that holds, when the underlying stock price

has pricing errors (see Proposition 1) to attain:
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- 1 En(0) (A. 34)

b,, =b < )
na ny N (621) An(O)
B2 A. 35
) lng—z + (r + %) T (A 39
d =
1 bnA\/?

) dby, b, - ~
Since —4 > 0 and b, > b, for p,_€ (—j, 1], it is the case that b,,, > b,,, for p,_€
ny n

b . 0E, 5 _% ,
(_E’ 1]. Therefore, since 9bn, >0, E, — En > 0forp,_ € ( b 1], where the firm’s

equity value, in the presence of pricing errors in its stock price, is:

En(A4n©) = AN (dy) = Dpe "N (dy), (A. 36)
dy = dy — by V. (A. 37)
Q.E.D.

Proof of Proposition 8: Let the covariance matrix between observed underlying assets be:

C= [61,1 C1,2] (A. 38)
Co1 G2
Ci1= bfy =bZ + bgz1 + 2b1 b, p1g, (A. 39)
Ci2 = Coq = p12b1bs + Pe, 6, be be, + P16, b1be, + P2, b2be, (A. 40)
Ca2 = b3y = b3 + bZ, + 2byb;,p; (A. 41)
so that
(A. 42)

dYL— = I'ltdt + det’

where dW, = (dW;, dW,); is a vector of independent standard Brownian motion innovations and
where
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bie, . (A. 43)
Hie = a; + q; + a;((t), ) + - t bib;¢,pi; ie{1,2}

c =CC, (A. 44)
where C is lower-triangular.

Consider a portfolio that is short a contingent claim and long H,, (t) units of the underlying
assets for n = {1,2}. Therefore, the problem for the contingent claim writer is to exactly hedge
his contingent claim obligation. Precisely, the contingent claim writer wants to find a value V7 (0)
such that when invested in a self-financing trading strategy, yields the contingent claim payoff
V(Y,t), where Y = (Y;,Y,)":

0=—(V(Y,t) - V(Y,0)) +HeY, (A. 45)

where H = (Hy, H,)' andHeY = Y2 | fot H;(uw)dy;(u).

The gradient and Hessian matrix of V (Y, t) w.r.t. Y are:

DWy = (Vv V(o)) (A. 46)
2 (Ynom® wmorno (A. 47)
D2V = ,

Won® Ynono

The SDE corresponding to Equation (i) is:

0 =—dV(t) + H(t)'dY(t) (A. 48)
0=- (Vt + (DY dv(D) + %dY(t)’(DZVY)dY(t)> +H(' V(@) (A 49)
(A. 50)

0 = —V, + (H(t) — D'Vy)'dY(t) — %dY(t)’(DZVY)dY(t).
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Therefore, setting H(t) = wDVy, where w = 1 for a call option and w = —1 for a put option,
makes the portfolio gain in the final line deterministic and the following Black-Scholes equation

is attained:

1. A A. 51
Vi +5 COIRE + (DY (D) ~ 7 =0, (A-51)

which, when imposing the boundary condition V(Y,T) =maX(O,Y1(T)—Y2(T)) has the

Margrabe (1978) solution:

VY, 1,w) = e N1"S;N(wd{)w — e~ 12" S, N (wd,) w. (A.52)
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Table 1

Modified call option price

This table presents modified Black-Scholes call option prices in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option prices when there are no pricing errors in the underlying asset. Panels B, C, and

D respectively consider annualized pricing error volatilities of b, . = 0.10, b,, . = 0.25, and b, . = 0.50, respectively. p, . is the

. . . . . . . .. Cv{ds,a
correlation between innovations in underlying asset price and its pricing error (p, . = {ds.de)

VV{as}/v{aey
parameters are: S = 100, b, = 0.15, T = 0.5, r = 0.03.
K
Pn,e 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)

BSC 2123 1645 1198 8.07 498 280 143 066 0.28

Panel B: b, . = 0.10
-1.00 21.19 16.27 1134 645 227 033 001 0.00 0.00
-0.75 2119 16.28 1146 7.06 3.61 147 047 012 0.02
-0.50 2121 16.36 11.75 7.69 449 232 105 042 0.15
-0.25 2125 1651 1210 826 521 3.02 161 079 0.36
0.00 21.33 16.70 1245 878 582 363 213 118 0.61
025 2143 1691 1280 925 6.37 418 261 156 0.89
0.50 2155 17.14 1314 969 6.87 468 3.07 194 118
0.75 21.69 17.37 1347 1011 733 514 349 230 147
100 2184 1760 13.79 1050 776 558 390 266 177

Panel C: b, . = 0.25
-1.00 21.19 16.28 1146 7.06 3.61 147 047 012 0.02
-0.75 21.28 16.60 1227 852 553 334 187 098 048
-0.50 2155 17.14 13.14 969 6.87 468 3.07 194 118
-0.25 2191 17.72 1395 10.68 797 578 409 283 191
0.00 2231 1829 1469 1156 891 6.74 501 366 2.63
0.25 2273 1885 1538 1235 976 761 584 443 332
050 2315 19.39 16.03 13.08 1054 839 6.61 516 3.99
0.75 2356 1991 16.64 13.75 1125 912 733 584 462
1.00 2398 2042 1722 1439 1192 980 800 649 5.23

Panel D: b, . = 0.50
-1.00 23.15 19.39 16.03 13.08 1054 839 6.61 516 3.99
-0.75 2398 2042 17.22 1439 1192 980 8.00 6.49 523
-0.50 24.78 21.37 1829 1556 13.15 1105 924 7.70 6.38
-0.25 2554 2225 19.28 16.62 14.26 1219 1038 881 7.45
0.00 26.28 23.09 20.20 17.61 1529 13.24 1143 9.84 8.46
0.25 26.98 23.88 21.06 1852 16.24 1421 1241 10.82 941
050 27.65 2463 21.88 19.39 17.14 1513 13.33 11.73 10.31
0.75 2830 2535 2265 20.20 17.99 16.00 14.21 12.60 11.17
1.00 2893 26.04 2339 20.98 18.79 16.82 15.04 1344 12.00
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Table 2

Modified call option delta

This table presents modified Black-Scholes call option deltas in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option deltas when there are no pricing errors in the underlying asset. Panels B, C, and
D respectively consider annualized pricing error volatilities of b, . = 0.10, b,, . = 0.25, and b, . = 0.50, respectively. p, . is the

correlation between innovations in underlying asset price and its pricing error (p, . =

Cv{ds,de}

VV{ds}/Videy
parameters are: S = 100, b, = 0.15, T = 0.5, r = 0.03.
K
Pn,e 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)
BSC 099 096 0.88 0.75 058 040 0.24 0.13 0.06
Panel B: b, . = 0.10
-1.00 1.00 1.00 1.00 097 0.67 0.17 0.01 0.00 0.00
-0.75 1.00 099 096 0.83 060 0.33 0.14 0.04 o0.01
-0.50 1.00 0.97 091 0.78 058 0.38 0.21 0.10 0.04
-0.25 099 095 087 074 058 040 0.25 0.14 0.07
0.00 097 093 084 0.72 057 042 029 018 0.11
025 09 091 082 071 057 043 031 021 0.13
050 095 089 0.80 0.69 057 044 033 0.23 0.16
0.75 094 088 0.79 0.69 057 045 034 025 0.18
100 092 086 0.78 0.68 057 046 0.36 0.27 0.20
Panel C: b, . = 0.25
-1.00 1.00 099 096 0.83 060 0.33 0.14 0.04 o0.01
-0.75 098 094 086 0.73 057 041 0.27 0.16 0.09
-050 095 0.89 0.80 0.69 057 044 0.33 0.23 0.16
-0.25 092 086 0.77 068 057 046 0.36 0.28 0.20
0.00 09 083 075 0.66 057 048 039 031 024
025 088 081 0.74 0.66 057 049 041 0.33 0.27
050 086 080 0.73 0.65 057 049 042 035 0.29
075 085 079 0.72 065 058 050 043 037 0.31
1.00 084 078 071 065 058 051 044 0.38 0.33
Panel D: b, . = 0.50
-1.00 0.86 0.80 0.73 0.65 057 049 042 0.35 0.29
-0.75 084 0.78 0.71 065 058 051 044 038 0.33
-050 082 0.76 0.71 0.64 058 052 046 041 0.35
-0.25 081 0.75 070 064 059 053 047 042 0.38
0.00 080 075 070 0.64 059 054 049 044 0.39
025 079 0.74 069 0.64 059 054 050 045 041
050 0.78 0.74 069 064 060 055 051 046 042
0.75 078 0.73 0.69 0.64 060 056 051 047 044
1.00 0.77 073 069 0.65 0.60 056 052 048 0.45
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Table 3

Modified call option gamma

This table presents modified Black-Scholes call option gammas in Panel B-D when the underlying asset contains pricing errors.
Panel A contains the baseline Black-Scholes call option gammas when there are no pricing errors in the underlying asset. Panels
B, C, and D respectively consider annualized pricing error volatilities of b, . = 0.10, b, . = 0.25, and b,, . = 0.50, respectively.

The remaining

Pne is the correlation between innovations in underlying asset price and its pricing error (o, ¢ = % .
pricing parameters are: S = 100, b, = 0.15,T = 0.5, r = 0.03.
K
Pn,e 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)
BSC 0.0027 0.0085 0.0186 0.0299 0.0369 0.0363 0.0294 0.0200 0.0118
Panel B: b, . = 0.10
-1.00 0.0000 0.0000 0.0003 0.0188 0.1023 0.0727 0.0089 0.0002 0.0000
-0.75 0.0002 0.0022 0.0125 0.0351 0.0547 0.0512 0.0308 0.0127 0.0037
-0.50 0.0015 0.0064 0.0175 0.0321 0.0417 0.0406 0.0307 0.0186 0.0094
-0.25 0.0033 0.0092 0.0188 0.0289 0.0350 0.0346 0.0287 0.0203 0.0126
0.00 0.0048 0.0108 0.0188 0.0264 0.0308 0.0307 0.0267 0.0206 0.0143
0.25 0.0061 0.0117 0.0184 0.0244 0.0278 0.0278 0.0249 0.0203 0.0152
050 0.0069 0.0122 0.0179 0.0228 0.0255 0.0256 0.0235 0.0198 0.0156
0.75 0.0076 0.0124 0.0173 0.0214 0.0237 0.0239 0.0222 0.0192 0.0157
1.00 0.0081 0.0124 0.0168 0.0203 0.0222 0.0224 0.0211 0.0187 0.0156
Panel C: b, . = 0.25
-1.00 0.0002 0.0022 0.0125 0.0351 0.0547 0.0512 0.0308 0.0127 0.0037
-0.75 0.0041 0.0102 0.0189 0.0276 0.0327 0.0325 0.0276 0.0206 0.0136
-0.50 0.0069 0.0122 0.0179 0.0228 0.0255 0.0256 0.0235 0.0198 0.0156
-0.25 0.0082 0.0124 0.0165 0.0198 0.0216 0.0218 0.0206 0.0184 0.0156
0.00 0.0088 0.0122 0.0153 0.0177 0.0191 0.0193 0.0186 0.0171 0.0151
0.25 0.0089 0.0118 0.0143 0.0161 0.0172 0.0175 0.0170 0.0159 0.0144
0.50 0.0089 0.0113 0.0134 0.0149 0.0158 0.0161 0.0158 0.0150 0.0138
0.75 0.0088 0.0109 0.0126 0.0140 0.0147 0.0150 0.0148 0.0142 0.0133
1.00 0.0087 0.0105 0.0120 0.0131 0.0138 0.0141 0.0140 0.0135 0.0127
Panel D: b, . = 0.50
-1.00 0.0089 0.0113 0.0134 0.0149 0.0158 0.0161 0.0158 0.0150 0.0138
-0.75 0.0087 0.0105 0.0120 0.0131 0.0138 0.0141 0.0140 0.0135 0.0127
-0.50 0.0084 0.0098 0.0110 0.0119 0.0124 0.0127 0.0126 0.0123 0.0118
-0.25 0.0080 0.0092 0.0102 0.0109 0.0114 0.0116 0.0116 0.0114 0.0111
0.00 0.0077 0.0087 0.0095 0.0101 0.0105 0.0108 0.0108 0.0107 0.0104
0.25 0.0073 0.0082 0.0089 0.0095 0.0099 0.0101 0.0101 0.0101 0.0099
0.50 0.0071 0.0078 0.0085 0.0089 0.0093 0.0095 0.0096 0.0095 0.0094
0.75 0.0068 0.0075 0.0080 0.0085 0.0088 0.0090 0.0091 0.0091 0.0090
1.00 0.0066 0.0072 0.0077 0.0081 0.0084 0.0086 0.0087 0.0087 0.0086
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Table 4

Modified call option theta

This table presents modified Black-Scholes call option thetas in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option thetas when there are no pricing errors in the underlying asset. Panels B, C, and
D respectively consider annualized pricing error volatilities of b, . = 0.10, b,, . = 0.25, and b, . = 0.50, respectively. p, . is the

The remaining pricing

correlation between innovations in underlying asset price and its pricing error (p,, . = %.
parameters are: S = 100, b, = 0.15, T = 0.5, r = 0.03.
K
Pne 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)
BSC -263 -333 -438 -537 -573 -519 -398 -262 -151
Panel B: b, . = 0.10
-1.00 -236 -251 -266 -295 -322 -142 -015 0.00 0.00
-0.75 -237 -261 -316 405 -442 -350 -193 -0.75 -0.22
-050 -248 -299 -391 -490 526 -461 -328 -191 -0.94
-025 -273 -351 460 -559 595 544 -429 -295 -1.79
0.00 -3.07 -404 522 -619 -654 -6.14 -513 -3.85 -2.63
0.25 -345 456 577 -6.72 -7.07 -6.74 -584 -464 -341
0.50 -38 505 627 -720 -756 -7.28 -6.46 -5.34 -4.13
0.75 -424 551 674 -764 -800 -7.77 -7.03 -597 -4.80
1.00 -464 594 -717 -805 -842 -823 -755 -655 -541
Panel C: b, . = 0.25
-1.00 -237 -261 -316 405 442 -350 -193 -0.75 -0.22
-0.75 -289 -378 492 -590 -6.26 -580 -473 -342 -2.22
-050 -38 505 -627 -720 -756 -7.28 -6.46 -534 -4.13
-025 -483 -615 -738 -825 -862 -844 -780 -6.83 571
0.00 574 -712 832 -916 -954 -943 -891 -8.06 -7.04
0.25 -6.59 -797 915 -997 -10.36 -10.31 -9.87 -9.13 -8.20
0.50 -7.36 -875 990 -10.712 -11.11 -11.11 -10.74 -10.09 -9.23
0.75 -8.08 -946 -1059 -11.39 -11.80 -11.84 -11.53 -10.95 -10.16
1.00 -8.75 -10.12 -11.24 -12.02 -12.45 -1251 -1226 -11.74 -11.02
Panel D: b, . = 0.50
-1.00 -736 -875 -9.90 -10.712 -11.11 -11.11 -10.74 -10.09 -9.23
-0.75 -875 -10.12 -11.24 -12.02 -12.45 -1251 -12.26 -11.74 -11.02
-0.50 -997 -11.31 -1240 -13.18 -13.63 -13.75 -13.58 -13.17 -12.55
-0.25 -11.05 -12.38 -1345 -14.22 -14.69 -14.86 -14.76 -14.43 -13.91
0.00 -12.04 -13.35 -1441 -15.18 -15.67 -15.88 -15.84 -15.58 -15.13
0.25 -1295 -14.24 -1529 -16.06 -16.57 -16.82 -16.83 -16.63 -16.25
0.50 -13.79 -15.07 -16.11 -16.89 -17.42 -17.69 -17.75 -17.60 -17.28
0.75 -1457 -15.85 -16.88 -17.67 -18.21 -18.52 -18.61 -18.51 -18.25
1.00 -1531 -16.58 -17.61 -18.41 -18.96 -19.30 -19.42 -19.37 -19.15
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Table 5

Modified call option vega

This table presents modified Black-Scholes call option vegas in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option vegas when there are no pricing errors in the underlying asset. Panels B, C, and

D respectively consider annualized pricing error volatilities of b, . = 0.10, b,, . = 0.25, and b, . = 0.50, respectively. p, . is the

. . . . . . . .. Cv{ds,a
correlation between innovations in underlying asset price and its pricing error (p, . = tds.de)

The remaining pricing

VV{as}/v{aey
parameters are: S = 100, b, = 0.15, T = 0.5, r = 0.03.
K
Pns 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)

BSC 2.01 6.35 1393 2242 27.68 27.23 22.02 15.01 8.83

Panel B: b, . = 0.10
-1.00 0.00 0.00 0.08 470 2558 18.17 2.23 0.06 0.00
-0.75  0.06 0.83 468 13.18 20.52 19.18 1155 4.75 1.40
-0.50 0.74 3.22 8.77 16.03 20.87 20.30 15.34 9.32 4.68
-0.25  2.05 578 11.75 18.07 2190 2164 1791 1272 7.90
0.00 3.63 8.13 1412 19.79 23.09 23.00 19.99 1544 10.76
0.25 529 1025 16.14 2134 2430 2434 2181 1776 13.29
0.50 6.94 1217 1791 2276 2550 25.63 23.46 19.80 15.57
0.75 854 1392 1952 2409 26.66 26.87 2497 2163 17.63
1.00 10.07 1553 2098 2534 27.79 28.06 26.38 23.31 19.52

Panel C: b, . = 0.25
-1.00 -009 -110 -6.24 -17.57 -27.36 -25.58 -15.40 -6.33 -1.86
-0.75 -077 -190 -354 517 -6.13 -6.09 -518 -3.86 -2.56
-0.50 0.87 1.52 2.24 2.85 3.19 3.20 2.93 2.47 1.95
-0.25  3.60 5.43 7.23 8.65 9.45 9.55 9.02 8.04 6.80
0.00 6.58 912 1146 1326 1429 1449 1393 1279 11.29
0.25 950 1249 1514 17.15 1831 18.60 18.09 16.94 15.35
0.50 1229 1556 1840 2053 21.79 2216 21.72 20.62 19.03
0.75 1492 1838 21.34 2355 2488 2533 2497 2394 2239
1.00 1739 20.99 24.02 2629 2768 2820 2792 26.97 25.49

Panel D: b, . = 0.50
-1.00 -15.64 -19.81 -23.42 -26.13 -27.73 -28.21 -27.65 -26.24 -24.22
-0.75 -978 -11.81 -1351 -1479 -1557 -15.86 -15.71 -15.17 -14.34
-050 -418 -489 549 593 -6.22 -634 -632 -6.17 -592
-0.25  1.00 1.15 1.27 1.36 1.42 1.45 1.45 1.43 1.38
0.00 5.75 6.50 7.12 7.59 7.90 8.07 8.10 8.01 7.82
0.25 10.10 1130 12.28 13.03 1355 1385 1393 13.83 13.58
050 1412 1565 1692 1789 1858 1899 19.14 19.06 18.79
0.75 1785 19.65 21.13 2229 2311 2363 2385 2382 2356
1.00 2133 2333 2500 26.30 2725 27.87 2817 28.19 27.96
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Table 6

Modified call option rho

This table presents modified Black-Scholes call option rhos in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option rhos when there are no pricing errors in the underlying asset. Panels B, C, and
D respectively consider annualized pricing error volatilities of b, . = 0.10, b,, . = 0.25, and b, . = 0.50, respectively. p, . is the
. . . . . . . - CV{ds,de} .. -
correlation between innovations in underlying asset price and its pricing error (p, . = ——=—==—==). The remaining pricing

JV{ds}/Vide}
parameters are: S = 100, b, = 0.15, T = 0.5, r = 0.03.

K
Pne 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)

BSC 38.85 39.67 38.14 3352 26.36 1836 1132 6.20 3.04

Panel B: b, . = 0.10
-1.00 39.40 4187 4431 4531 3240 854 0.60 0.01 0.00
-0.75 39.39 4159 4221 3821 28.08 1572 6.54 2.04 0.48
-0.50 39.16 40.52 39.56 3491 26.85 17.67 9.90 474 196
-0.25 38.65 39.24 37.52 3296 26.16 18.62 1189 6.83 3.56
0.00 38.00 38.02 3594 31.63 2569 19.20 1322 8.42 4.99
0.25 37.30 36.92 34.68 30.64 2532 1957 1417 9.65 6.20
050 36.61 35.95 33.66 29.85 25.03 19.83 14.89 10.63 7.24
0.75 3594 3510 3280 29.21 2478 20.02 1546 1143 8.12
1.00 3530 3434 32.06 28.67 2456 20.17 1591 1210 8.89

Panel C: b, . = 0.25
-1.00 39.39 4159 4221 3821 28.08 1572 6.54 2.04 0.48
-0.75 3834 38.61 36.68 3224 2591 1894 1261 7.68 4.30
-0.50 36.61 3595 33.66 29.85 25.03 19.83 1489 10.63 7.24
-0.25 3500 3399 31.73 2843 24.46 20.22 16.11 1239 9.23
0.00 33.64 3248 30.35 27.44 24.03 2042 16.86 13.56 10.65
0.25 3248 31.28 29.29 26.69 23.68 2051 17.36 1439 11.71
0.50 3149 30.29 2844 26.08 2339 2055 17.72 15.01 1253
0.75 30.63 29.46 27.73 25,57 23.13 2055 17.97 1549 13.17
1.00 29.88 28.75 2712 2513 22.89 20.54 18.17 15.87 13.70

Panel D: b, . = 0.50
-1.00 3149 30.29 2844 26.08 2339 2055 17.72 1501 1253
-0.75 29.88 28.75 27.12 2513 22.89 20.54 1817 15.87 13.70
-0.50 28.61 2756 26.13 2440 2248 20.46 1842 16.41 14.49
-0.25 2757 26.61 2533 2381 2213 20.36 1856 16.78 15.06
0.00 26.69 2581 24.66 2330 21.81 20.23 18.63 17.03 15.47
0.25 2594 2513 24.09 2287 2152 20.10 18.65 17.20 15.78
050 25.28 2454 2358 2248 21.26 19.97 1865 17.32 16.02
0.75 2470 2401 2314 2212 21.01 19.83 18.62 17.40 16.20
1.00 2417 2354 2273 2180 20.78 19.70 1858 1745 16.33
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Table 7

Call option E

This table presents modified Black-Scholes call option Es in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option Es when there are no pricing errors in the underlying asset (these are all missing
values, since there is no E Greek in the Black-Scholes model) . Panels B, C, and D respectively consider annualized pricing error

volatilities of b, . = 0.10, b, . = 0.25, and b, . = 0.50, respectively. p, . is the correlation between innovations in underlying

asset price and its pricing error (p, = —d a2}

). The remaining pricing parameters are: S = 100, b, = 0.15,T = 0.5, r =

JV(as}/videy
0.03.
K
Pne 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)

BSC nan nan nan nan nan nan nan nan nan

Panel B: b, . = 0.10
-1.00 0.00 0.00 -0.08 -470 -25.58 -18.17 -2.23 -0.06 0.00
-0.75 -001 -0.14 -078 -220 -342 -3.20 -192 -0.79 -0.23
-0.50 019 080 219 4.01 5.22 5.07 383 233 117
-0.25 102 289 587 9.03 1095 1082 895 6.36 3.95
0.00 242 542 942 1320 1539 1533 13.33 10.30 7.17
0.25 4,16 805 12.68 16.77 19.09 19.12 17.14 1395 10.45
0.50 6.08 10.64 15.68 19.92 2231 2242 2052 17.32 13.62
0.75 8.06 13.14 18.43 2275 2518 2537 2358 20.43 16.65
1.00 10.07 1553 2098 2534 27.79 28.06 26.38 23.31 19.52

Panel C: b, . = 0.25
-1.00 009 110 6.24 1757 2736 2558 1540 6.33 1.86
-0.75 282 6.98 1299 1896 2249 2232 1899 1414 9.38
-0.50 6.08 10.64 15.68 19.92 2231 2242 2052 17.32 13.62
-0.25 8.75 1319 1755 21.00 2294 23.19 2190 19.52 16.53
0.00 1096 1520 19.11 22.10 23.82 24.14 2322 21.32 18.82
0.25 1286 16.90 20.49 2320 2478 25.16 24.47 2292 20.77
0.50 1452 18.39 21.75 2426 2575 26.19 25.67 24.37 22.49
0.75 16.02 19.74 2292 2529 26.73 27.21 26.82 25.71 24.05
1.00 17.39 2099 24.02 26.29 27.68 28.20 27.92 26.97 25.49

Panel D: b, . = 0.50
-1.00 15.64 19.81 2342 26.13 27.73 28.21 27.65 26.24 2422
-0.75 16.85 20.33 23.27 2546 26.82 27.32 27.05 26.13 24.69
-0.50 17.75 20.79 2332 2521 2642 2694 26.85 26.21 25.14
-0.25 1850 2122 2348 2518 26.30 26.84 26.86 26.42 25.60
0.00 19.15 21.65 2372 2529 26.34 26.90 27.01 26.70 26.06
0.25 19.75 22.08 24.00 2548 26.49 27.07 27.23 27.04 26.53
0.50 20.30 2250 2432 2572 2671 2729 2751 2740 27.01
0.75 20.83 2292 2465 26.00 2697 2757 27.83 27.79 27.48
1.00 2133 2333 2500 26.30 27.25 27.87 28.17 28.19 27.96
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Table 8

Call option P

This table presents modified Black-Scholes call option Ps in Panel B-D when the underlying asset contains pricing errors. Panel
A contains the baseline Black-Scholes call option Ps when there are no pricing errors in the underlying asset (these are all missing
values, since there is no P Greek in the Black-Scholes model) . Panels B, C, and D respectively consider annualized pricing error
volatilities of b, . = 0.10, b, . = 0.25, and b, . = 0.50, respectively. p, . is the correlation between innovations in underlying

asset price and its pricing error (p,, . = J“%f}—s%). The remaining pricing parameters are: S = 100, b, = 0.15, T = 0.5, r =
0.03.
K
Pn,e 80 85 90 95 100 105 110 115 120
Panel A: Black-Scholes (b, . = 0)
BSC nan nan nan nan  nan nan  nan_ nan nan
Panel B: b, . = 0.10
-1.00 0.00 0.00 0.02 141 7.68 545 0.67 0.02 0.00
-0.75 0.01 0.17 094 264 410 384 231 095 0.28
-050 011 048 131 240 313 3.04 230 140 0.70
-025 025 069 141 217 263 260 215 153 0.95
0.00 036 081 141 198 231 230 200 154 1.08
025 045 088 138 1.83 208 209 187 152 1.14
050 052 091 134 171 191 192 176 148 1.17
0.75 057 093 130 161 178 179 166 144 1.18
1.00 060 093 126 152 167 168 158 140 1.17
Panel C: b, . = 0.25
-1.00 0.03 041 234 659 1026 959 577 237 0.70
-0.75 077 190 354 517 6.13 6.09 518 3.86 256
-050 130 228 336 427 478 480 440 371 292
-0.25 154 233 310 371 4.05 4.09 3.87 344 292
0.00 164 228 287 332 357 362 348 320 2.82
025 168 220 267 3.03 323 328 319 299 271
050 168 212 251 280 297 3.02 29 281 259
0.75 166 204 237 262 276 281 277 266 249
1.00 163 197 225 246 260 264 262 253 239
Panel D: b, . = 0.50
-1.00 335 424 502 560 594 6.04 592 562 5.19
-0.75 326 394 450 493 519 529 524 506 4.78
-0.50 3.13 3.67 411 445 466 475 474 463 444
-0.25 3.00 344 381 408 426 435 436 4.28 4.15
0.00 287 325 356 379 395 4.04 405 4.01 391
025 276 3.08 335 355 370 378 380 377 3.70
050 265 294 317 335 348 356 359 357 3.52
0.75 255 281 3.02 318 330 338 341 340 3.37
1.00 246 269 288 3.04 314 322 325 325 323
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Table 9

Probability of default

This table presents modified Merton (1974) model probabilities of default (N(—d,)) in Panel B-D when the underlying asset
contains pricing errors. Probabilities are presented in basis points, where 1 bp = %’) Panel A contains the baseline Merton model

probabilities of default when there are no pricing errors in the underlying asset. Panels B, C, and D respectively consider annualized
pricing error volatilities of b, . = 0.10, b, . = 0.25, and b, . = 0.50, respectively. p,, . is the correlation between innovations in

CV{ds,de} - - A = — —
s Vi w{ds})' The remaining pricing parameters are: A = 100, b,, = 0.45, T =
b, (A-D) # _ b, (A-D)

N(d,) Vv ‘n'A_N(al) v

underlying asset price and its pricing error (p, . =

05,7 =0.03, by =

D
Pne 80 85 90 95
Panel A: Black-Scholes (b, . = 0)
BSC 12.562 24.950 41186  38.111
Panel B: b, . = 0.10
-1.00 0.194 0.719 2.087 2.459
-0.75 1.040 3.011 6.921 7.310
-0.50 3.441 8.315 16.260  16.037
-0.25 8.394 17.720 30.813  29.047
0.00 16.715 31.800 50.618  46.263
0.25 28.897 50.637 75.268  67.312
0.50 45.099 73.964  104.128 91.678
0.75 65.220  101.304  136.487 118.805
1.00 88.979  132.094 171649 148.160
Panel C: b, . = 0.25
-1.00 0.000 0.000 0.000 0.000
-0.75 0.009 0.052 0.233 0.346
-0.50 1.618 4.381 9.483 9.756
-0.25 15.069 29.120 46.965  43.115
0.00 51.382 82.658 114561 100.441
0.25 111.284 159.966 202.632 173.973
0.50  189.298  252.423  301.557 256.337
0.75  279.010 352.778 404.630 342.370
1.00 375.157 456.010 507.724 428.826
Panel D: b, . = 0.50

-1.00 0.000 0.000 0.000 0.000
-0.75 0.094 0.388 1.248 1.546
-0.50 24.391 43.841 66.549  59.900
-0.25 135.605 189.506  234.794 200.748
0.00 310560 387.058  439.138 371.259
0.25 507.012 592.816 641.284 541.555
050 702.205 788.658  828.438 700.995
0.75  886.766  968.907 997.880 846.847
1.00 1057.679 1132.831 1150.360 979.291
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Figure 1

European call price difference

This figure plots the surface of the difference & — ¢35 between the European call option price with pricing errors in the underlying
asset and the Black-Scholes European call option price. The parameters used for the figure are: S(t) = 100, r = 0.03, b = 0.15,

b, = 0.10,and p, = 0. %denotes option moneyness and T = T — t denotes the time-to-maturity in years.
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Figure 2
E. and P, Greeks
This figure plots the European call option price sensitivity to the pricing error volatility E. = :TC in Panel (a) and the European call
, =2 n
TR

option price sensitivity to the correlation between pricing error innovations and underlying asset true price innovations P,
Panel (b). The parameters used for the figure are: S(t) = 100, r = 0.03, b = 0.15, b, = 0.10, and p; = 0. % denotes option

moneyness and T = T — t denotes the time-to-maturity in years.
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Figure 3
Option Greek differences

This figures presents the difference between the modified European call option greeks when the underlying asset has pricing errors
and standard Black-Scholes European call option greeks. A is in Panel (a), T is in Panel (b), © is in Panel (c), v is in Panel (d),
and p is in Panel (e). Definitions of the greeks are provided in Proposition 3. The parameters used for the figure are: S(¢t) = 100,

r=0.03, b =0.15, b, = 0.10, and p, = 0. %denotes option moneyness and T = T — t denotes the time-to-maturity in years.
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Figure 4

European call option implied RND

European call option implied CRND
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Risk neutral density comparative statics

This figure presents the European call option implied risk neutral probability density (RND) as a function of the underlying asset’s
pricing error volatility in Panel (a) and the associated risk neutral cumulative probability density (CRND) in Panel (c). The
European call option implied risk neutral probability density (RND) as a function of the correlation between pricing errors and
underlying asset innovations (p,, ) is plotted in Panel (b) and the associated risk neutral cumulative probability density (CRND) in
Panel (d). The parameters used for the figure are: S(¢t) = 100, r = 0.03, b = 0.15, T = 1, b, € {0,0.10, 0.25,0.50}. p, c = 0 in
Panels (a) and (c). S denotes the terminal stock price at expiration. The RND and CRND are, respectively, calculated as:

b2
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Jbét ’

RND(X) =

Nl

byvTX'

(d2)

CRND(X) =1—N(d,),
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where b = b? + b2 + pp ¢bpby .. Note the differing y-axes in Panels (a) and (b).
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Figure 5

American option price comparative statics

This figure plots the American option prices when the underlying asset contains pricing errors. As a function of the underlying
asset pricing error volatility (b:), American call option values are plotted in Panel (a) and American put option values are plotted
in Panel (b). As a function of the correlation between pricing errors and underlying asset price innovations (py ), American call
option values are plotted in Panel (c) and American put option values are plotted in Panel (d) The parameters used for the figure
are: S(t) = 100, X = 100, r = 0.03, b = 0.15, T = 1, b, € {0,0.10,0.25,0.50}. p, . = 0 in Panels (a) and (b). Sy denotes the
terminal stock price at expiration. Note the different x-axis (S7) in Panel (d).
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