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Abstract 

This paper examines the effects that pricing errors in the underlying asset have on options prices, 

their greeks, and their implied risk neutral densities.  Pricing errors can be viewed as a random 

proportional transaction cost.  When pricing errors are information-unrelated, options prices are 

unambiguously higher than the Black-Scholes case and increasing in the pricing error variance.  

Hedging volatility is higher and the optimal exercise price for American put options is decreased.  

The option implied risk-neutral density and option Greeks are materially affected, which leads to 

suboptimal risk management and hedging without accounting for the pricing errors. 
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1. Introduction 

Separate large bodies of literature have recently emerged with one examining optimal 

trading rules (and hedging) with transaction costs (Atmaz and Basak, 2019; Clewlow and Hodges, 

1997; Grandits and Schachinger, 2001; Guéant and Pu, 2017; Kabanov and Safarian, 1997; Kallsen 

and Muhle-Karbe, 2015; Leland, 1985; Lepinette, 2012; Nguyen and Pergamenshchikov, 2017) 

and with the other identifying and filtering pricing error variances out of observed asset price return 

variances to recover the uncorrupted volatility matrix (Jacod, Li, and Zheng, 2017; Piccotti, 2020; 

Zhang, 2006; Zhang, Mykland, and Aït-Sahalia, 2005).  Generally, however, these two strings of 

literature have not been connected to examine the effect that pricing errors in the underlying asset 

has on options pricing and their associated hedging strategy.  I seek to fill this gap in the literature. 

 Pricing errors can be viewed as a random proportional transaction cost.  The seminal work 

of Leland (1985) shows that an alternative appropriately chosen volatility can be substituted into 

the Black-Scholes option pricing formula, which accounts for the transaction costs.  Further, as an 

implication of this, transaction costs can be estimated from the observed Black-Scholes prices.2  I 

derive a similar result, with respect to pricing error variances, where a suitably chosen volatility 

can be substituted into the Black-Scholes formula, which accounts for the pricing errors.  In this 

manner, my adjustment to the variance plugged into the standard Black-Scholes formula is similar 

in nature to that of Leland (1985) to address fixed positive transaction costs and to that of Lo and 

Wang (1995) to address predictability in the underlying asset price return. 

 Similar to the case with fixed transactions costs, options prices are higher in my modified 

Black-Scholes case than in the standard Black-Scholes case to account for the increased cost of 

 
2 Ofek, Richardson, and Whitelaw (2004) show that violations to put-call parity are strongly related to short sale 

constraints.  As a result, violations to put-call parity could also be used to back out the magnitude of trading costs. 
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replicating the option payoff.  There are two important dissimilarities between pricing errors and 

transaction costs, however.  First, prior studies have generally treated the transaction cost as a 

constant (function of trading periods), whereas pricing errors are variable.  Second, transaction 

costs are strictly positive, whereas pricing errors can be positive or negative.  As a result, in some 

cases, the trader purchases the asset for cheaper than its true price and in other cases, the trader 

purchases the asset more expensively than its true price.  In this respect, pricing errors represent 

variable positive and negative transaction costs.  Pricing errors in the underlying asset lead to an 

unhedgable variance, where extant evidence by Gârleanu, Pedersen, and Poteshman (2009) has 

shown that option prices are affected by demand pressures in an amount proportional to the 

variance of the unhedgeable part of the option.  Pricing errors during trading hours in the 

underlying asset prices may also contain explanatory power for the finding by Jones and Shemesh 

(2018) that stock return variance is mispriced in options over weekend periods.  

 I advance the option pricing literature by deriving closed-form option prices, their 

respective hedging arguments, and associated greeks, when the underlying asset price contains 

pricing errors.  I assume a linear additive pricing error in log prices, which contains an information-

related component and an information-unrelated component.  If the information-related component 

is equal to 0 (there is no correlation between pricing errors and the underlying true asset price 

innovation), then the call option on an underlying asset with pricing errors is always more 

expensive than the standard Black-Scholes call option valuation.  In the presence of information-

related pricing errors, whether a call option price is more or less valuable than the standard Black-

Scholes call option price depends critically on the correlation coefficient between pricing error 

innovations and the true efficient price innovations.  This also generally holds for the call option 

greeks.  Specifically, if the correlation is less than minus one-half of the ratio of pricing error 
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volatility to true price return volatility (𝜌 ∈ [−
𝑏𝜀

2𝑏
, 1], see Corollary 1), then the modified call 

option price is more valuable than the standard Black-Scholes call option price.  The percentage 

pricing errors between the modified call option prices and the standard Black-Scholes options 

prices are greatest for out-of-the money (OTM) call options, while deep in-the-money (ITM) call 

options are little affected. 

 The option greeks are also critically affected when the underlying asset price contains 

pricing errors.  As a result, using the standard Black-Scholes greeks leads to erroneous risk-

management and hedging in these cases.  In the simple call option case where the pricing error 

does not contain an information-related component, delta is lower for near ITM strikes and higher 

for near OTM strikes, gamma is lower for ATM strikes, theta is lower for ATM strikes, vega is 

lower for ATM strikes and higher both for near ITM and OTM strikes, and rho is lower for near 

ITM strikes and higher for near OTM strikes.  The biases contained in the greeks also depend on 

the time-to-maturity of the option.  Biases in gamma and theta diminish as option time-to-maturity 

increases, while biases in vega and rho diminish as option time-to-maturity converges to 0.  The 

biases inherent in the option delta are little affected by option time-to-maturity, except for in the 

case of deep OTM and deep ITM options. 

 In addition to the standard Black-Scholes first-order greeks, two new greeks exist when the 

underlying asset contains pricing errors: the option’s sensitivity to pricing error volatility (Ε) and 

the option’s sensitivity to the correlation between the pricing error innovation and the true price 

innovation (Ρ, the option price’s sensitivity to the information-related pricing error component).  

In both cases, Ε and Ρ are greatest ATM and dissipate to 0 symmetrically as the option is further 

ITM or OTM.  This pattern suggests that ATM options’ notional values are the most effected by 
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pricing errors in the underlying asset (in contrast, percentage errors in the option price relative to 

the standard Black-Scholes price are greatest for OTM options). 

 Finally, I extend the base model to its modular representation, which can accommodate 

stochastic factors in the underlying asset (stochastic volatility, stochastic interest rates, and jumps), 

to the effects of pricing errors on American option prices, to the effects that pricing errors have on 

the risk-neutral density, and to the effects that pricing errors have on the value of a firm’s equity 

(priced in a Merton, 1974 model framework). 

 The remainder of the paper is organized as follows.  Section 2 presents the option pricing 

model.  Section 3 extends the model and discusses applications of the model.  Section 4 concludes. 

 

2. Model 

2.1.  Preliminaries 

Consider a complete standard financial market ℳ in a Black-Scholes world.3  There is a 

risk-free strictly positive bank account 𝐵 with its innovations and the innovations in the 𝑛’th asset’s 

true price 𝑆𝑛 given by: 

𝑑𝐵(𝑡) = 𝑟𝐵(𝑡)𝑑𝑡, (1) 

𝑑𝑆𝑛(𝑡)

𝑆𝑛(𝑡)
= 𝑎𝑛𝑑𝑡 + 𝑏𝑛𝑑𝑊𝑛(𝑡), 

(2) 

 
3 ℳ is standard and complete if (i) it is viable (there are no arbitrage opportunities), (ii) the number of assets in the 

market 𝑁 is equal to the dimension of the 𝐷-dimensional driving Brownian motions, (iii) the 𝐷-dimensional price of 

risk 𝜃 is finite almost surely (∫ ‖𝜃(𝑡)‖2𝑑𝑡 < ∞
𝑇

0
), (iv) and the following is a martingale, 𝑍(𝑡) = exp {−∫ 𝜃′(𝑠)𝑑𝑠

𝑡

0
−

1

2
∫ ‖𝜃(𝑠)‖2𝑑𝑠

𝑡

0
}. 
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where 𝑟 is the (constant) risk-free rate, 𝑎𝑛 is the (constant) per annum expected return on the asset, 

𝑏𝑛 is the (constant) per annum standard deviation of the asset’s returns, and 𝑑𝑊𝑛(𝑡) is the 

innovation to a standard Brownian motion.  The usual filtration ℱ𝑊 = 𝜎{𝑊: 0 ≤ 𝑠 ≤ 𝑇} is 

assumed.  The true price in unobservable, however, and only the price, which is corrupted by 

microstructure noise is observable:  

𝑌𝑛(𝑡) = 𝑆𝑛(𝑡)𝑒𝜀𝑛(𝑡), (3) 

where 𝜀𝑛(𝑡) is the pricing error, which has a distribution dependent on the stochastic differential 

equation (SDE) that is assumed to govern its evolution 𝑑𝜀𝑛(𝑡).  Therefore, the financial market 

described by Equations (1)-(3) differs from the traditional Black-Scholes market only by the 

presence of the pricing error.   

Let the general SDE for the pricing error be: 

𝑑𝜀𝑛(𝑡) = 𝑎𝑛(𝜀𝑛(𝑡), 𝑡)𝑑𝑡 + 𝑏𝑛𝜀
𝑑𝑊𝑛𝜀

(𝑡), (4) 

and let 𝜌𝑛𝜀
 be the correlation between 𝑑𝑆𝑛 and 𝑑𝜀𝑛.  The correlated pricing error structure here is 

similar in nature to the permanent-transitory pricing error used by Hasbrouck (1993), which is 

extended to a multi-asset framework by De Jong and Schotman (2010).4  Using such a mean-

reversion model as Equation (4) for the pricing errors is capable of accommodating autocorrelated 

pricing errors as has been found in Jacod, Li, and Zheng (2017).  Note that the volatility parameters 

in both Equation (2) and Equation (4) can be made constants, even if they are time varying 

parameters by using the average volatilities over the life of the option (for example, 𝑏𝑛 =

1

𝜏
∫ 𝑏𝑛(𝑢)𝑑𝑢

𝜏

0
 and 𝑏𝑛,𝜀 =

1

𝜏
∫ 𝑏𝑛,𝜀(𝑢)𝑑𝑢

𝜏

0
, 𝑏𝑛(𝑡) and 𝑏𝑛,𝜀(𝑡) can be determined by the solution of 

 
4 Vanden (2008) also shows that information quality and informed trading affects option prices. 
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the stochastic differential equation used to describe their evolutions).  Therefore, I assume that 

they are time invariant.    

To prevent the pricing error 𝜀(𝑡) from straying too far away from 0, a mean-reverting 

stochastic process can be chosen to describe it.  For example, suppose that the pricing error is 

described by a Vasicek (1977) process, 𝑑𝜀𝑛(𝑡) = 𝑘𝑛𝜀
(𝜁𝑛𝜀

− 𝜀(𝑡)) 𝑑𝑡 + 𝑏𝑛𝜀
𝑑𝑊𝑛𝜀

(𝑡), which 

permits both positive and negative pricing errors to arise, where 𝑘𝑛𝜀
> 0 is the mean-reversion 

intensity coefficient, 𝜁𝑛𝜀
 is the long-run mean pricing error, 𝑏𝑛𝜀

 is the volatility of the pricing error, 

and 𝑑𝑊𝑛𝜀
(𝑡) can be correlated with true price’s driving Brownian motion 𝑑𝑊𝑛(𝑡) with a 

correlation coefficient of 𝜌𝑛𝜀
.  An intuitive example parameterization within this framework for 

Equation (4) is if 𝑘𝑛𝜀
=

1

𝑑𝑡
.  Then the pricing error fully reverts to 0 each 𝑑𝑡-period and is normally 

distributed around the true price 𝑆𝑛(𝑡) with a mean of 0 and a variance of 
1

2
𝑏𝑛𝜀

2 𝑑𝑡. 

Note that the multiplicative pricing error term is lognormally distributed, which is similar 

in form to the Dothan (1978) model and dissimilar to the exponential Vasicek model.  The 

following proposition describes the evolution of the observed price process {𝑌𝑛(𝑡)}0≤𝑡≤𝑇. 

Proposition 1 Assume that the true underlying asset price process is described by Equation (2) 

and that the pricing error process is described by Equation (4).  The observed price process 

{𝑌𝑛(𝑡): 0 ≤ 𝑡 ≤ 𝑇}  evolves according to: 

𝑑𝑌𝑛(𝑡)

𝑌𝑛(𝑡)
= (𝑎𝑛 + 𝑎𝑛𝜀

(𝜀𝑛(𝑡), 𝑡) +
𝑏𝑛𝜀

2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
)𝑑𝑡 + 𝑏𝑛𝑌

𝑑𝑊𝑛𝑌
(𝑡) 

(5) 

with the solution 
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𝑌𝑛(𝑡) = 𝑌𝑛(0) exp [(𝑎𝑛 +
𝑏𝑛𝜀

2 − 𝑏𝑛𝑌
2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
) 𝑡 

(6) 

+𝑏𝑛𝑌
𝑊𝑛𝑌

(𝑡) + ∫ 𝑎𝑛𝜀
(𝜀𝑛(𝑢), 𝑢)𝑑𝑢

𝑡

0

] 
 

where 𝑑𝑊𝑛𝑌
(𝑡) = 𝑏𝑛𝑑𝑊𝑛(𝑡) + 𝑏𝑛𝜀

𝑑𝑊𝑛𝜀
(𝑡), 𝑏𝑛𝑌

2 = 𝑏𝑛
2 + 𝑏𝑛𝜀

2 + 2𝑏𝑛𝑏𝑛𝜀
𝜌𝑛𝜀

. 

Proof: See Appendix A. 

Proposition 1 shows that the observed price 𝑌𝑛(𝑡) follows a geometric Brownian motion, which 

is adjusted by the cumulative compounded effects of pricing errors.   

 

2.2.  Hedging in the presence of pricing errors 

The method for solving for the hedging strategy follows that of the original Black-Scholes 

problem.  Consider a portfolio that is short a contingent claim and long 𝐻(𝑡) units of the underlying 

asset.  Therefore, the problem for the contingent claim writer is to exactly hedge his contingent 

claim obligation.  Precisely, the contingent claim writer wants to find a value 𝑉(0) such that when 

invested in a self-financing trading strategy, yields the contingent claim payoff 𝑉(𝑌, 𝑡): 

0 = −(𝑉(𝑌, 𝑡) − 𝑉(𝑌, 0)) + 𝐻𝑛 • 𝑌𝑛, (7) 

where 𝐻𝑛 • 𝑌𝑛 denotes the stochastic integral,  𝐻𝑛 • 𝑌𝑛 ≝ ∫ 𝐻𝑛(𝑢)𝑑𝑌𝑛(𝑢)
𝑡

0
.  The SDE 

corresponding to Equation (7) is: 

0 = −𝑑𝑉(𝑡) + 𝐻𝑛(𝑡)𝑑𝑌𝑛(𝑡)  

0 = (−𝑉𝑡 −
1

2
𝑏𝑛𝑌

2 𝑌𝑛
2(𝑡)𝑉𝑌(𝑡)𝑌(𝑡))𝑑𝑡 + (𝐻𝑛(𝑡) − 𝑉𝑌(𝑡))𝑑𝑌𝑛(𝑡) 
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0 = (−𝑉𝑡 −
1

2
𝑏𝑛𝑌

2 𝑌𝑛
2(𝑡)𝑉𝑌(𝑡)𝑌(𝑡) 

(8) 

+(𝐻𝑛(𝑡) − 𝑉𝑌(𝑡))𝑌𝑛(𝑡) (𝑎𝑛 + 𝑎𝑛𝜀
(𝜀𝑛(𝑡), 𝑡) +

𝑏𝑛𝜀
2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
))𝑑𝑡 

 

+ (𝐻𝑛(𝑡) − 𝑉𝑌(𝑡))𝑌𝑛(𝑡)𝑏𝑛𝑌
𝑑𝑊𝑛𝑌

(𝑡),  

where 𝑉𝑡 =
𝜕𝑉

𝜕𝑡
, 𝑉𝑌(𝑡) =

𝜕𝑉

𝜕𝑌𝑛(𝑡)
, and 𝑉𝑌(𝑡)𝑌(𝑡) =

𝜕2𝑉

𝜕𝑌𝑛
2(𝑡)

.  By choosing 𝐻𝑛(𝑡) = 𝑉𝑌(𝑡), the 

corresponding portfolio gain process becomes deterministic (risk-free) and as such is required to 

earn the risk-free rate, in the absence of arbitrage.  Setting the deterministic gain of the risk-free 

terms in Equation (8) equal to the risk-free deterministic gain on the position −𝑉(𝑌, 𝑡) +

𝑉𝑌(𝑡)𝑌𝑛(𝑡) gives a modified Black-Scholes equation: 

𝑉𝑡 +
1

2
𝑏𝑛𝑌

2 𝑌𝑛
2(𝑡)𝑉𝑌(𝑡)𝑌(𝑡) + 𝑟𝑉𝑌(𝑡)𝑌𝑛(𝑡) − 𝑟𝑉(𝑌, 𝑡) = 0. 

(9) 

Equation (9) is the Black-Scholes equation with the underlying asset being 𝑌𝑛 in place of 𝑆𝑛 and 

with the variance of the underlying asset increased.   

 

2.3.  Contingent claim valuation solution 

Consider the Green function approach to solving the PDE in Equation (9).  Let 𝑦 = ln 𝑌 

and 𝑉(𝑦, 𝜏) = 𝑒−𝑟𝜏𝑤(𝑦, 𝜏), where 𝜏 = 𝑇 − 𝑡 is the remaining time-to-maturity for the contingent 

claim.  Substituting 𝑦 and 𝑒−𝑟𝜏𝑤(𝑦, 𝜏) into Equation (9) in place of 𝑌 and 𝑉, respectively, allows 

the PDE to be re-written as: 
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𝜕𝑤

𝜕𝜏
=

𝑏𝑛𝑌

2

2

𝜕2𝑤

𝜕𝑦2
+ (𝑟 −

𝑏𝑛𝑌

2

2
)

𝜕𝑤

𝜕𝑦
, 

(10) 

where the initial condition is the contingent claim payoff.  In the case of a European call option, 

for example, the initial condition is 𝑤(𝑦, 0) = max(𝑒𝑦 − 𝑋, 0), where 𝑋 is the strike price.  The 

infinite dimension Green function of Equation (10) is: 

𝜙(𝑦, 𝜏; 𝜉) =
1

√2𝜋𝑏𝑛𝑌
2 𝜏

exp

(

 
 

−

[𝑦 + (𝑟 −
𝑏𝑛𝑌

2

2 ) 𝜏 − 𝜉]

2

2𝑏𝑛𝑌
2 𝜏

)

 
 

, 

(11) 

satisfying the initial condition lim
𝜏→0+

𝜙(𝑦, 𝜏; 𝜉) = 𝛿(𝑦 − 𝜉), where 𝛿(⋅) is the Dirac delta function 

representing a unit impulse at the point 𝜉, and 𝜏 → 0+ represents converging to 0 from the right.  

Therefore, the price of a contingent claim 𝑉 today, by the fundamental theorem of asset pricing, is 

its discounted expected future payoff: 

𝑤(𝑦, 𝜏) = 𝑒−𝑟𝜏 ∫ 𝑤(𝜉, 0)𝜙(𝑦, 𝜏; 𝜉)𝑑𝜉
∞

−∞

, 
(12) 

where the payoff of the contingent claim being valued is substituted in for 𝑤(𝜉, 0). 

Proposition 2  Assume that the current observed price equals the true price 𝑌𝑛 = 𝑆𝑛.  Consider 

the European call option with a payoff of 𝑐(𝑦, 𝜏) = 𝑚𝑎𝑥(𝑒𝑦 − 𝑋, 0).  Substituting this payoff into 

Equation (12) for 𝑤 and evaluating gives the modified BSM call option price: 

𝑐̃(𝑆𝑛, 𝜏) = 𝑆𝑛 𝑁(𝑑̃1) − 𝑒−𝑟𝜏𝑋 𝑁(𝑑̃2), (13) 

𝑝̃(𝑆𝑛, 𝜏) = 𝑒−𝑟𝜏𝑋𝑁(𝑑̃2) − 𝑆𝑛𝑁(𝑑̃1) (14) 
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where 𝑁(𝑥) = ∫ 𝑁′(𝜉)𝑑𝜉
𝑥

−∞
  denotes the standard normal cumulative distribution function, 𝑁′(𝑥) 

is the probability density of the standard normal distribution, and where 

𝑑̃1 =

ln
𝑆𝑛
𝑋 + (𝑟 +

𝑏𝑛𝑌
2

2 ) 𝜏

√𝑏𝑛𝑌
2 𝜏

, 𝑑̃2 = 𝑑̃1 − √𝑏𝑛𝑌
2  𝜏. 

(15) 

and where 𝑏𝑛𝑌
2 = 𝑏𝑛

2 + 𝑏𝑛𝜀
2 + 2𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
. 

Proof:  See Appendix A. 

 Proposition 2 suggests that when there are pricing errors in the underlying asset, the BSM 

option price can be modified by increasing the variance of the underlying asset, which is similar 

to the method proposed in Leland (1985) to accommodate fixed transactions costs and by Lo and 

Wang (1995) to accommodate return predictability in the underlying asset.  As a result, the hedging 

volatility is 𝑏𝑛𝑌
.  This is the Black-Scholes implied volatility that equates the Black-Scholes price 

to the option price prevailing with pricing errors in the underlying asset.5  Using the volatility 

parameter 𝑏𝑛 would lead to either over hedging or under hedging.  Whether the European call 

option price is greater than or less than the Black-Scholes price depends on the correlation 𝜌𝑛𝜀
 

between underlying true asset value changes and pricing error changes as Corollary 1 outlines.  

 As is apparent from the call option value’s form being the same as the standard Black-

Scholes option pricing model, a multiplicative pricing error as considered in Equation (3) cannot 

explain the implied volatility smile.  The implied volatility curve remains flat, but at a higher level 

than 𝑏𝑛.  However, if the underlying asset contains pricing errors, then inverting the Black-Scholes 

 
5 See Renault and Touzi (1996) for a discussion of the hedging ratio under stochastic volatility. 
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model gives an implied volatility for the underlying stock, which is erroneous (see Hentschel, 

2003), since the resulting volatility estimate also contains the effect of pricing error volatility.  

Therefore, the primary mechanism through which pricing errors in the underlying asset affect 

European options trading is through changing the option Greeks, hedging requirements, risk-

neutral density.  In Section 3.3. , I provide evidence, which shows that pricing errors in the 

underlying asset also affect the smooth pasting condition for American put options. 

Corollary 1  Assume that the current observed price equals the true price 𝑌𝑛 = 𝑆𝑛.  Consider the 

European call option with a payoff of 𝑐(𝑦, 𝜏) = 𝑚𝑎𝑥(𝑒𝑦 − 𝑋, 0).  Then, 

𝑐̃ − 𝑐𝐵𝑆 ≥ 0 𝑓𝑜𝑟 𝜌𝑛𝜀
∈ [−

𝑏𝑛𝜀

2𝑏𝑛
, 1]

𝑐̃ − 𝑐𝐵𝑆 < 0 𝑓𝑜𝑟 𝜌𝑛𝜀
∈ [−1,−

𝑏𝑛𝜀

2𝑏𝑛
)

. 

(16) 

Proof:  The option price is a bijective function of variance and 𝑏𝑛𝑌
2 < 𝑏𝑛

2 when 𝜌𝑛𝜀
∈ [−1,−

𝑏𝑛𝜀

2𝑏𝑛
). 

Figure 1 presents the surface of differences between European call option prices when the 

underlying asset has pricing errors and the respective Black-Scholes European call option prices 

for the case where 𝜌𝑛𝜀
> −

𝑏𝑛𝜀

2𝑏𝑛
.  Call prices, when the underlying asset has pricing errors are higher 

than Black-Scholes prices for options that are near-the-money with the difference in prices and the 

range of moneyness affected both increasing in time-to-maturity.  When 𝜌𝑛𝜀
< −

𝑏𝑛𝜀

2𝑏𝑛
, the mirror 

image is observed, with call prices being lower than the Black-Scholes call price.  Similarly, a the 

European put price is relatively more expensive than the Black-Scholes put price when 𝜌𝑛𝜀
>

−
𝑏𝑛𝜀

2𝑏𝑛
 and vice versa when 𝜌𝑛𝜀

< −
𝑏𝑛𝜀

2𝑏𝑛
.  Therefore, the nature of the information-related pricing 

errors is critical to determining relative value of options on underlying assets with pricing errors 



12 

 

versus the respective Black-Scholes prices.  If adverse selection costs are high, 𝜌𝑛𝜀
> −

𝑏𝑛𝜀

2𝑏𝑛
 and 

observed option prices are higher than those implied by the Black-Scholes model.  In fact, as long 

as information frictions and trading barriers are sufficiently small, observed options prices are 

larger than Black-Scholes call prices. 

[Insert Figure 1 about here] 

 Table 1 presents the modified Black-Scholes call option prices as a function of both the 

pricing error volatility (𝑏𝑛,𝜀) and the pricing error innovation’s correlation (𝜌𝑛𝜀
) with innovations 

in the true underlying asset price (𝑆).  Call option prices are increasing in both 𝑏𝑛𝜀
 as well as in 

the 𝜌𝑛𝜀
, since an increase in each of these variables increases the volatility of the observed 

underlying asset price (𝑌) innovations.  Following from Corollary 1, the call option price is 

relatively cheap compared to the standard Black-Scholes call option price when 𝜌𝑛𝜀
∈ [−1,−

𝑏𝑛𝜀

2𝑏𝑛
) 

and relatively expensive when 𝜌𝑛𝜀
∈ [−

𝑏𝑛𝜀

2𝑏𝑛
, 1].  As the pricing error volatility increases, the 

modified Black-Scholes option price is higher for all levels of 𝜌𝑛𝜀
 since lim

𝑏𝑛
𝑏𝑛𝜀

→0

𝜌𝑛𝜀
∈ [−1,1] ⊂

[−
𝑏𝑛𝜀

2𝑏𝑛
, 1].  It is also apparent that the percentage revision in call option price is increasing in 

moneyness (from ITM to OTM), which shows that very large percentage pricing errors in option 

prices can arise if the Black-Scholes model is used erroneously, when the underlying asset contains 

pricing errors. 

[Insert Table 1 about here] 

The option Greeks associated with the call and put options prices in Equations (13)-(15) 

are presented in Proposition 3. 
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Proposition 3  Assume that the current observed price equals the true price 𝑌𝑛 = 𝑆𝑛.  Consider 

the European call and put option prices in Equations (13)-(15).  The associated options greeks 

are: 

Δ𝑐 =
𝜕𝑐

𝜕𝑆𝑛
= 𝑁(𝑑̃1), Δ𝑝 =

𝜕𝑝

𝜕𝑆𝑛
= 𝑁(𝑑̃1) − 1, 

(17) 

Θ𝑐 = −
𝜕𝑐

𝜕𝜏
= −

𝑆𝑛𝑏𝑛𝑌

2√𝜏

1

√2𝜋
𝑒−

𝑑̃1
2

2 − 𝑟𝑋𝑒−𝑟𝜏𝑁(𝑑̃2), 
(18) 

Θ𝑝 = −
𝜕𝑝

𝜕𝜏
= −

𝑆𝑛𝑏𝑛𝑌

2√𝜏

1

√2𝜋
𝑒−

𝑑̃1
2

2 + 𝑟𝑋𝑒−𝑟𝜏𝑁(−𝑑̃2), 
 

Γ =
𝜕2𝑉

𝜕𝑆𝑛
2

= Γ𝑐 = Γ𝑝 =
1

𝑆𝑛𝑏𝑛𝑌√𝜏

1

√2𝜋
𝑒− 

𝑑̃1
2

2  
(19) 

𝑣 =
𝜕𝑉

𝜕𝑏𝑛
= 𝑣𝑐 = 𝑣𝑝 =

𝑏𝑛𝜀
𝜌𝑛𝜀

+ 𝑏𝑛

√2𝑏𝑛𝑏𝑛𝜀
𝜌𝑛𝜀

+ 𝑏𝑛
2 + 𝑏𝑛𝜀

2

𝑆𝑛

1

√2𝜋
𝑒−

𝑑̃1
2

2 √𝜏 
(20) 

𝜌𝑐 =
𝜕𝑐

𝜕𝑟
= 𝑋𝜏𝑒−𝑟𝜏𝑁(𝑑̃2), 𝜌𝑝 =

𝜕𝑝

𝜕𝑟
= −𝑋𝜏𝑒−𝑟𝜏𝑁(−𝑑̃2) 

(21) 

Ε𝑐 =
𝜕𝑐

𝜕𝑏𝑛𝜀

=
𝑏𝑛𝜌𝑛𝜀

+ 𝑏𝑛𝜀

√2𝑏𝑛𝑏𝑛𝜀
𝜌𝑛𝜀

+ 𝑏𝑛
2 + 𝑏𝑛𝜀

2

𝑆𝑛𝑁′(𝑑̃1)√𝜏 
(22) 

Ρ𝑐 =
𝜕𝑐

𝜕𝜌𝑛𝜀

=
𝑏𝑛𝑏𝑛𝜀

√2𝑏𝑛𝑏𝑛𝜀
𝜌𝑛𝜀

+ 𝑏𝑛
2 + 𝑏𝑛𝜀

2

𝑆𝑛𝑁′(𝑑̃1)√𝜏 
(23) 

Proof: See Appendix A. 

 Figure 2 presents the two new Greeks that are introduced, when the underlying asset 

contains pricing errors and for the case where 𝜌𝑛𝜀
> −

𝑏𝑛𝜀

2𝑏𝑛
.  Ε𝑐, the sensitivity of the call price to 

the standard deviation of the pricing error, is plotted in Panel (a) and Ρ𝑐, the sensitivity of the call 

price to the correlation coefficient of the pricing error with the underlying true price change 𝑑𝑆 
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and the pricing error innovation 𝑑𝜀, is plotted in Panel (b).  For both Ε𝑐 and Ρ𝑐, the partial 

derivatives are positive and are the greatest for ATM options.  The sensitivities are also positively 

related to the time-to-maturity across the surface. 

[Insert Figure 2 about here] 

 Figure 3 plots the surfaces of the differences between the European call option Greeks (for 

the 𝜌𝑛𝜀
> −

𝑏𝑛𝜀

2𝑏𝑛
 case), in the presence of pricing errors in the underlying asset, and the Greeks of 

the Black-Scholes call option price.  In Panel (a) and Panel (e), Δ𝑐 and 𝜌𝑐, respectively, are 

decreased for close ITM options and increased for close OTM options.  Panels (b) and (d), 

respectively, show that Γ𝑐 and 𝑣𝑐 are lower for ATM options and higher for moderate deviations 

in moneyness from ATM when the underlying asset has pricing errors versus the Black-Scholes 

case without pricing errors.  Finally, Panel (c) shows that Θ𝑐 is lower for ATM options when the 

underlying asset has pricing errors versus the Black-Scholes case.  Together, the results in Figure 

3 provide evidence that pricing errors in the underlying asset have important risk management and 

hedging implications for options. 

[Insert Figure 3 about here] 

 Table 2-Table 6 present the modified Black-Scholes call option greeks as a function of the 

underlying asset’s pricing error volatility and the pricing error’s correlation with the true 

underlying asset’s price innovations.  Table 2 contains the call option deltas (Δ𝑐) from Equation 

(17).  ITM deltas are decreasing in the volatility of the pricing error, while OTM deltas are 

increasing in it.  Likewise, holding the volatility of the pricing error fixed, ITM (OTM) deltas are 

decreasing (increasing) in the correlation 𝜌𝑛𝜀
.  Since there is also a bijective relationship between 
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option delta and variance.  𝜌𝑛𝜀
= −

𝑏𝑛𝜀

2𝑏𝑛
 is the correlation coefficient value at which point the 

standard Black-Scholes call option delta is equal to the modified Black-Scholes option delta in 

Equation (17).  As a result, using the standard Black-Scholes delta with 𝜌𝑛𝜀
> −

𝑏𝑛𝜀

2𝑏𝑛
 causes ITM 

(OTM) call (put) options to be underhedged and OTM (ITM) call (put) options to be overhedged.  

The opposite results when 𝜌𝑛𝜀
< −

𝑏𝑛𝜀

2𝑏𝑛
. 

[Insert Table 2 about here]  

 Table 3 contains the modified call option gammas (Γ𝑐) from Equation (19).  Gammas do 

not have a monotonic relationship with the volatility of the pricing errors, which is suggested from 

Panel (b) of Figure 3.  While ATM gammas are decreasing in the volatility of the pricing error, 

ITM gammas and OTM gammas have no monotonic relationship with the pricing error volatility.  

There is also not a monotonic relationship between option gammas and the correlation coefficient 

𝜌𝑛𝜀
 between the underlying asset’s pricing error innovations and underlying true asset price 

innovations.  The following proposition gives the value for 𝜌𝑛𝜀
, at which pint Γ is maximized. 

Proposition 4 Consider the option prices given in Proposition 2 and the respective greeks in 

Proposition 3.  Then, the value of Γ, as a function of 𝜌𝑛𝜀
, reaches its maximum when: 

𝜌𝑛𝜀
maxΓ =

−𝑏𝑛
3𝑏𝑛𝜀

− 2𝑇−1𝑏𝑛𝑏𝑛𝜀
− 𝑏𝑛𝑏𝑛𝜀

3

2𝑏𝑛
2𝑏𝑛𝜀

2
 

(24) 

+
2𝑇−1√𝑏𝑛

2𝑏𝑛𝜀
2 +𝑏𝑛

2𝑟2𝑇2𝑏𝑛𝜀
2 +2𝑏𝑛

2𝑟𝑇 ln(
𝑆

𝑋
)𝑏𝑛𝜀

2 +𝑏𝑛
2 ln(

𝑆

𝑋
)
2
𝑏𝑛𝜀

2

2𝑏𝑛
2𝑏𝑛𝜀

2 .  
 

Proof: Set the partial derivative 
𝜕Γ

𝜕𝜌𝑛𝜀

 equal to 0 and solve for 𝜌𝑛𝜀
. 
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If 𝜌𝑛𝜀
maxΓ ∈ [−1,1], then there is an interior maximum (which is always the case).  Deep ITM and 

deep OTM call options gammas, however, have a monotonic positive relationship with the 

correlation coefficient 𝜌𝑛𝜀
 for 𝜌𝑛𝜀

∈ [−1,1] and the maximum is reached at the boundary of 𝜌𝑛𝜀
=

1. 

[Insert Table 3 about here] 

 Modified call option thetas are presented in Table 4.  Modified call option thetas are 

negatively related to the volatility of the pricing error as well as negatively related to the correlation 

coefficient 𝜌𝑛𝜀
.  The modified call option theta is less than the standard call option theta when 

𝜌𝑛𝜀
> −

𝑏𝑛𝜀

2𝑏𝑛
.   As a result, market-neutral options strategies (as well as strategies aiming to profit 

from small market moves) will be placed at the wrong location along the strike price line, if the 

standard Black-Scholes theta is used, rather than the modified ones in Equation (18). 

[Insert Table 4 about here] 

 Table 5 presents the modified vega from Equation (20).  Option vegas when the underlying 

asset contains pricing errors are negatively related to the pricing error volatility.  In fact, when 

pricing errors are present, the option vega can become negative when there is a sufficiently large 

negative correlation between the true underlying asset’s price innovations and the pricing error 

innovations.  While the relationship between the modified call option vega and the correlation 

coefficient 𝜌𝑛𝜀
 is positive for ITM and OTM options, the relationship is a U-shaped pattern for 

ATM call options, when the pricing error volatility is small (Panel A).  The regions for 𝜌𝑛𝜀
 for at 

which the modified vega is negative, 0, and positive are given in Corollary 2. 
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Corollary 2 Consider the option prices given in Proposition 2 and the respective greeks in 

Proposition 3.  Then, 

𝑣 < 0 for 𝜌𝑛𝜀
< −

𝑏𝑛

𝑏𝑛𝜀

,

𝑣 = 0 for 𝜌𝑛𝜀
= −

𝑏𝑛

𝑏𝑛𝜀

,

𝑣 > 0 for 𝜌𝑛𝜀
> −

𝑏𝑛

𝑏𝑛𝜀

.

 

(25) 

Proof: From Equation (20), 𝑣 = 0 when 𝑏𝑛𝜀
𝜌𝑛𝜀

+ 𝑏𝑛 = 0.  Solving this for 𝜌𝑛𝜀
 gives 𝜌𝑛𝜀

= −
𝑏𝑛

𝑏𝑛𝜀

. 

Similar to the other greeks, the modified vega can be greater than or less than the standard 

Black-Scholes vega.  However, there is no analytic solution for the value of 𝜌𝑛𝜀
, which sets the 

modified vega equal to the standard vega. 

[Insert Table 5 about here] 

 Table 6 presents the modified call option rho greek values in Equation (21).  As with the 

Δ𝑐, Γ, and Θ𝑐 modified call option greeks, the modified call option 𝜌𝑐 crosses the standard Black-

Scholes call option 𝜌 when 𝜌𝑛𝜀
= −

𝑏𝑛𝜀

2𝑏𝑛
.  Whether the modified rho is greater than or less than the 

standard rho depends on option moneyness, however.  For 𝜌𝑛𝜀
< −

𝑏𝑛𝜀

2𝑏𝑛
, ITM and ATM modified 

call rhos are greater than the standard Black-Scholes ones, OTM modified call option rhos are less 

than the standard Black-Scholes ones (see Panel (e) of Figure 3).  The moneyness level at which 

the sign of 
𝜕𝜌𝑐

𝜕𝜌𝑛𝜀

 switches sign is also dependent on the volatility of the pricing error, with the level 

𝑋

𝑆
 at which this occurs and the pricing error volatility being positively related. 

[Insert Table 6 about here] 
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 Table 7 and Table 8 present the two new call option greeks that are unique to the option 

price when there are pricing errors (Ε𝑐 and Ρ𝑐, respectively).  Both Ε𝑐 and Ρ𝑐 are increasing in the 

volatility of the pricing error and neither Ε𝑐 nor Ρ𝑐 have a monotonic relationship with the 

correlation coefficient 𝜌𝑛𝜀
.  The relationship between Ε𝑐 and 𝜌𝑛𝜀

 is a J-pattern and the relation 

between Ρ𝑐 and 𝜌𝑛𝜀
 is an inverted J-pattern.  While the polynomial forms for both 

𝜕Ε𝑐

𝜕𝜌𝑛𝜀

 and 
𝜕Ρ𝑐

𝜕𝜌𝑛𝜀

 

are complicated, each is a cubic function in 𝜌𝑛𝜀
, which allows the unique value for 𝜌𝑛𝜀

 to be solved 

for, which minimizes (maximizes) Ε𝑐 (Ρ𝑐).  

[Insert Table 7 and Table 8 about here] 

 

3. Model extensions and applications 

In this section, I extend the Black-Scholes framework to show how pricing errors in the 

underlying asset affect options prices with various exercise policies and payoff structures. 

 

3.1.  Risk neutral density 

Consider the risk neutral density (RND) for the underlying asset as derived from European 

call options.  It is well known that the RND 𝑓(𝑋), in the Black-Scholes framework, for the 

underlying asset 𝑆𝑛 is 𝐹′(𝑋) = 𝑓(𝑋) = 𝑒𝑟𝜏 𝜕2𝑐̃(𝑋)

𝜕𝑋2 =
𝑁′(𝑑̃2)

𝜎√𝜏𝑋
 and that the cumulative density 

function is 𝐹(𝑋) = 1 − 𝑁(𝑑̃2), where 𝑑̃2 has been substituted in place of 𝑑2 to account for the 

effect that pricing errors have on options prices (see Proposition 2).  Figure 4 Panel (a) presents 

the RNDs derived from Black-Scholes European call option prices for annualized pricing error 
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standard deviations of 0%, 10%, 25%, and 50%.  The presence of pricing errors in the underlying 

asset biases the RND to have a more dispersed distribution.  Panel (b) presents the cumulative 

RND function as a function of the pricing error and underlying asset price innovation correlation 

coefficient.  The RND becomes more dispersed as 𝜌𝑛𝜀
 increases as well.  Panels (c) and (d) plot 

the respective cumulative RND functions.  As a result of the biases created by pricing errors in the 

underlying asset, out of the money calls and puts are relatively more expensive, when the 

underlying asset has pricing errors. 

[Insert Figure 4 about here] 

 

3.2.  General European option pricing model with stochastic factors 

The option pricing model can be generalized simply within a modular pricing framework.  

In this section, I extend the option pricing model to its modular representation, which can 

accommodate stochastic factors in the true underlying asset, such as stochastic volatility, stochastic 

interest rates, and jumps.  Following the derivations included in Zhu (2010), the general modular 

form for the European call option price, with pricing errors included is outlined in the following 

proposition. 

Proposition 5 Assume that the current observed price equals the true price 𝑌𝑛(0) = 𝑆𝑛.  Consider 

the European call option with a payoff of 𝑐(𝑦, 𝜏) = 𝑚𝑎𝑥(𝑒𝑦 − 𝑋, 0).  Then, 

𝑐̃ = 𝑆𝐹1(ln 𝑌(𝑇) > ln 𝑋) − 𝑋𝐵(0, 𝑇)𝐹2(ln 𝑌(𝑇) > ln 𝑋), (26) 

where 
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𝐹𝑗(ln 𝑌(𝑇) > ln 𝑋) =
1

2
+

1

𝜋
∫ ℜ(𝑓𝑗(𝜙)

𝑒−𝑖𝜙 ln𝑋

𝑖𝜙
)𝑑𝜙

∞

0

 
(27) 

for 

𝑓𝑗(𝜙) = 𝑒𝑖𝜙 ln𝑆𝑓𝑗
𝑆𝑉(𝜙) × 𝑓𝑗

𝑆𝐼(𝜙) × 𝑓𝑗
𝑃𝐽(𝜙) × 𝑓𝑗

𝐿𝐽(𝜙), 𝑗 = 1,2. (28) 

where 𝑖 solves 𝑚2 = 1, ℜ(⋅) denotes the real part of a complex-valued number, and  (⋅)̃ denotes 

that 𝑏𝑛,𝜀 is used as the volatility parameter in place of 𝑏𝑛. 

Proof: See Appendix A. 

 ln 𝑌(0) = 𝑆, since at time 0, the pricing error is assumed to be equal to 0 and each of the 

characteristic functions 𝑓𝑗
𝑎(𝜙) for 𝑎 ∈ {𝑆𝑉, 𝑆𝐼, 𝑃𝐽, 𝐿𝐽} is with respect to the true underlying asset 

price 𝑆.  𝑓𝑗
𝑆𝑉(𝜙) is the characteristic function associated with stochastic volatility (example 

models include Heston, 1993; the double square root process of Longstaff, 1989; Schöbel and 

Zhu, 1999, among others), 𝑓𝑗
𝑆𝐼(𝜙) is the characteristic function associated with stochastic 

interest rates (example models include Cox, Ingersoll, and Ross, 1985; Longstaff, 1989, among 

others), 𝑓𝑗
𝑃𝐽(𝜙) is the characteristic functions associated with Poisson jumps (example models 

include Cox, Ross, and Rubenstein, 1979; Merton, 1976, among others), and 𝑓𝑗
𝐿𝐽(𝜙) is the 

characteristic function associated with Lévy jumps (example models include Barndorff-Nielsen 

and Shephard, 2001; Madan, Carr, and Chang, 1998; among others).  See Zhu (2010) for the 

characteristic functions for a variety of different model specifications. 

 

3.3.  American options 
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Consider American options on a non-dividend paying underlying asset.  Panel (a) of Figure 

5 shows that is continues to be suboptimal to exercise an American call option early.  Panel (b), 

however, shows that for American put options, the smooth pasting condition and optimal exercise 

price are affected by pricing errors in the underlying asset.  The optimal exercise boundary is 

decreasing in the size of the pricing error variance and as an implication of this, the early exercise 

premium embedded in American options is decreasing in the underlying asset’s pricing error 

variance.   This is stated in the following proposition. 

Proposition 6 Assume that the current observed price equals the true price 𝑌𝑛(0) = 𝑆𝑛 and that 

{𝑌𝑛(𝑡)} evolves according to Equation (5). The American put option is exercised optimally with a 

payoff at time 𝑡 of 𝑝̃𝑡(𝑦(𝑡), 𝜏) = 𝑋 − 𝑒𝑦(𝑡) for 𝑌𝑛(𝑡) ≤ 𝑌𝑛
∗(𝑡).  Then, in the limits as 𝜏 → 0+ and 

as 𝜏 → ∞, it is the case that: 

𝑌𝑛
∗(𝜏) < 𝑆𝑛

∗(𝜏), 𝜌𝑛𝜀
∈ (−

𝑏𝑛𝜀

2𝑏𝑛
, 1]

𝑌𝑛
∗(𝜏) = 𝑆𝑛

∗(𝜏), 𝜌𝑛𝜀
= −

𝑏𝑛𝜀

2𝑏𝑛

𝑌𝑛
∗(𝜏) > 𝑆𝑛

∗(𝜏), 𝜌𝑛𝜀
∈ [−1, −

𝑏𝑛𝜀

2𝑏𝑛
)

, 

(29) 

where 𝑆𝑛
∗(𝑡) is the value for the true underlying asset for which the American put option is 

exercised optimally in the absence of pricing errors; that is, 𝑝𝑡(𝑠(𝑡), 𝜏) = 𝑋 − 𝑒𝑠(𝑡) for 𝑆𝑛(𝑡) ≤

𝑆𝑛
∗(𝑡). 

Proof: See Appendix A. 

[Insert Figure 5 about here] 
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3.4.  Firm equity value and pricing error volatility 

Since a firm’s equity value can be viewed as a call option (Merton, 1974) with the firm’s 

face value of defaultable debt as the strike price, the effect that the presence of pricing errors in a 

firm’s stock has on the firm’s equity value can be easily examined.  Let 𝐷𝑛 > 0 denote the firm’s 

face value of risky debt (zero-coupon debt so that no coupon payments are made prior to maturity), 

which is has a term remaining of 𝜏.  Denote by 𝐴𝑛 the firm’s asset value, which has a per annum 

volatility equal to 𝑏𝑛,𝐴.  If the firm does not make the full payment due at time 𝑇 (the case where 

𝐴𝑛(𝑇) < 𝐷𝑛), then the debt holders immediately take over the company and the residual equity 

claim is worth 0.  Note that early optimal default is not allowed in this model.  Then, since equity 

is limited liability, the firm’s equity value is 𝐸𝑛(𝐴𝑛, 𝑇) = max(𝐴𝑛(𝑇) − 𝐷𝑛, 0). 

Proposition 7  Assume that the current observed price equals the true price 𝑌𝑛(0) = 𝑆𝑛 and that 

a firm with current assets of 𝐴𝑛 has a zero-coupon face value of debt outstanding in the amount 

of 𝐷𝑛 with a term of 𝜏.  Then, 

𝐸̃𝑛(𝐴𝑛, 𝜏) > 𝐸𝑛(𝐴𝑛, 𝜏) for 𝜌 ∈ (−
𝑏𝑛𝜀

2𝑏𝑛
, 1]

𝐸̃𝑛(𝐴𝑛, 𝜏) ≤ 𝐸𝑛(𝐴𝑛, 𝜏) for 𝜌 ∈ [−1, −
𝑏𝑛𝜀

2𝑏𝑛
]

, 

(30) 

where 𝐸̃𝑛 is the firm’s value of equity, when its stock price contains pricing errors, and 𝐸𝑛 is the 

firm’s value equity, when its underlying stock price does not contain pricing errors. 

Proof: See Appendix A. 

 Intuitively, Proposition 7 shows that if the pricing error increases the volatility of the 

firm’s observed equity value (𝜌 ∈ (−
𝑏𝑛𝜀

2𝑏𝑛
, 1]), which is a transfer of welfare away from the firm’s 
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creditors to its shareholders, then the value of the firm’s equity is higher.  Conversely, a pricing 

error which is sufficiently negatively correlated with the firm’s underlying true stock price (𝜌 ∈

[−1,−
𝑏𝑛𝜀

2𝑏𝑛
]), which transfers welfare away from the firm’s shareholders to its creditors, results in 

a lower equity value for the firm.  Merton model probabilities of default (𝑁(−𝑑2)) are presented 

in Table 9.  Consistent with Proposition 7, the firm’s probability of default in the presence of 

pricing errors in the underlying stock price is greater than the standard Black-Scholes (Merton, 

1974) case, when 𝜌𝑛𝜀
∈ (−

𝑏𝑛𝜀

2𝑏𝑛
, 1].  The probability of default is monotonically increasing in the 

volatility of the pricing error, since 
𝜕𝑏𝑛𝜀

𝜕𝜌𝑛𝜀

> 0.  The probability of default, however, is not 

monotonically increasing in the firm’s current equity level (𝐴𝑛(0) − 𝐷).  This result is due to the 

relation between the firm’s asset volatility, the firm’s stock return volatility, equity delta, and debt-

to-equity ratio, which given by 𝑏𝑛𝐴
= 𝑏𝑛 (

∂𝐸𝑛

𝜕𝐴𝑛
)
−1 𝐸

𝑉
 (see Equation (A. 33)).   

[Insert Table 9 about here] 

While Proposition 7 follows immediately from option pricing theory, the result also 

conforms to recent findings in the corporate finance literature with respect to the real effects that 

stock price efficiency has on firm value.  Fang, Noe, and Tice (2009) find that firms’ values are 

increasing in their stock liquidity, which is consistent with Proposition 7 when the price impact 

of trade is close to 0; that is, when 𝜌 ≈ 0.  Within a cost of capital context, one possible 

interpretation for this finding is that a pricing error which makes a firm’s stock price more volatile 

allows the firm to opportunistically raise capital and invest at a lower cost of capital as found in 

Muñoz (2013).  
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3.5.  Other closed-form option prices 

The option pricing arguments presented in Sections 2.1. to 2.3. can be easily extended to 

options on dividend-paying assets, options on foreign currency, and to exchange options, for 

example.  Assume that the continuously paid constant (for simplicity) yield of an asset is a function 

of its true price, rather than its observed price, and the dividend process does not contain a pricing 

error.  That is, the wealth process of holding one unit of the asset at its true price is 𝑆̂𝑛(𝑡) =

𝑒𝑞𝑛𝑡𝑆𝑛(𝑡).  Then, in this case, the observed asset price is 𝑌𝑛(𝑡) = 𝑆𝑛(𝑡)𝑒𝑞𝑛𝑡+𝜀𝑛(𝑡). 

The following 3 cases of options on a dividend paying asset, options on foreign currency,6 

and exchange options can be easily derived utilizing Margrabe’s formula7 (Margrabe, 1978). 

Proposition 8  Assume that the current observed price equals the true price 𝑌𝑛 = 𝑆𝑛 for 𝑛 = 1,2.  

Consider the European option with a payoff of 𝑉(𝑦, 𝜏) = 𝑚𝑎𝑥(𝜔[𝑒𝑦 − 𝑋], 0), where 𝜔 = 1 for a 

call option and 𝜔 = −1 for a put option.  Then, 

𝑉(𝑦, 𝜏, 𝜔) = 𝑒−𝑞1𝜏𝑆1𝑁(𝜔𝑑̃1)𝜔 − 𝑒−𝑞2𝜏𝑆2𝑁(𝜔𝑑̃2)𝜔, (31) 

where: 

i. 𝑞2 = 𝑟 and 𝑆2 = 𝑋 for an option on a dividend-paying asset. 

ii. 𝑞1 = 𝑟, 𝑞2 = 𝑟∗, and 𝑆2 = 𝑋 for an option on foreign currency, where 𝑟 is the domestic 

risk-free rate and 𝑟∗ is the foreign risk-free rate. 

iii. As is for an exchange option. 

 
6 See Garman and Kolhagen (1983) for a derivation of the standard foreign currency option price in the Black-

Scholes framework. 

 
7 Also see Fischer (1978). 
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𝑑̃1 =
ln

𝑆1
𝑆2

+ (𝑞1 − 𝑞2 +
𝑏𝑌

2

2
) 𝜏

√𝑏𝑌
2𝜏

, 𝑑̃2 = 𝑑̃1 − 𝑏𝑌
2√𝜏, 

where 𝑏𝑌
2 = [1 −1] [

𝐶1,1 𝐶1,2

𝐶2,1 𝐶2,2
] [

1
−1

], 

𝐶1,1 = 𝑏1,𝑌
2 = 𝑏1

2 + 𝑏𝜀1
2 + 2𝑏1𝑏𝜀1

𝜌1,𝜀1
, (32) 

𝐶1,2 = 𝐶2,1 = 𝜌1,2𝑏1𝑏2 + 𝜌𝜀1,𝜀2
𝑏𝜀1

𝑏𝜀2
+ 𝜌1,𝜀2

𝑏1𝑏𝜀2
+ 𝜌2,𝜀1

𝑏2𝑏𝜀1
, (33) 

𝐶2,2 = 𝑏2,𝑌
2 = 𝑏2

2 + 𝑏𝜀2
2 + 2𝑏2𝑏𝜀2

𝜌2,𝜀2
. (34) 

Proof: See Appendix A. 

 

4. Conclusion 

In this paper, I consider the option pricing problem when the underlying asset contains 

pricing errors, which are comprised of both information-unrelated and information-related terms.  

Pricing errors can be viewed as a variable proportional transaction tax, which can be positive (a 

positive pricing error) or negative (a negative pricing error).  As such, the traditional hedging 

volatility leads to over or under hedging.  I derive the closed-form European options prices along 

with their associated greeks and in this framework, options can be priced correctly by increasing 

the volatility parameter in the Black-Scholes equation appropriately (Proposition 2).  This 

modified hedging volatility in the Black-Scholes equation leads to proper hedging of the European 

contingent claim.  Further, I derive the option sensitivities to the volatility of pricing errors and to 

the correlation between the underlying asset’s true price innovation and pricing error innovations 

(Proposition 3). 



26 

 

When pricing errors are purely information-unrelated (uncorrelated with the true 

underlying asset value), options prices are unambiguously higher than in the Black-Scholes setting.  

When underlying asset pricing errors have an information-related term (correlated with the true 

underlying asset value), the options price is greater than or equal to the Black-Scholes case when 

the correlation coefficient is sufficiently large (Corollary 1).  Finally, as model extensions, I show 

how the risk neutral density is affected when the underlying asset contains pricing errors, how the 

optimal exercise boundary of American put options is affected (Proposition 6), and I derive the 

general form of the model with stochastic factors (Proposition 5), which can accommodate 

stochastic volatility, stochastic interest rates, Poisson jumps, and Lévy jumps in the true underlying 

asset price. 

 

Appendix A Proofs 

Proof of Proposition 1:  By Itô’s product rule: 

𝑑𝑌𝑛(𝑡) = 𝑑(𝑆𝑛(𝑡)𝑒𝜀𝑛(𝑡))  

= 𝑒𝜀𝑛(𝑡)𝑑𝑆𝑛(𝑡) + 𝑆𝑛(𝑡)𝑑(𝑒𝜀𝑛(𝑡)) + 𝑑𝑆𝑛(𝑡)𝑑(𝑒𝜀𝑛(𝑡)). (A. 1) 

Apply Itô’s lemma to 𝑒𝜀𝑛(𝑡): 

𝑑(𝑒𝜀𝑛(𝑡)) = 𝑒𝜀𝑛(𝑡) (𝑎𝑛𝜀
(𝜀𝑛(𝑡), 𝑡) +

𝑏𝑛𝜀
2

2
) 𝑑𝑡 + 𝑏𝑛𝜀

𝑑𝑊𝑛𝜀
(𝑡). 

(A. 2) 

Then, 

𝑑𝑌𝑛(𝑡) = 𝑒𝜀𝑛(𝑡)𝑆𝑛(𝑡)(𝑎𝑛𝑑𝑡 + 𝑏𝑛𝑑𝑊𝑛(𝑡))  

+ 𝑆𝑛(𝑡)(𝑎𝑛𝑑𝑡 + 𝑏𝑛𝑑𝑊𝑛(𝑡))𝑒𝜀𝑛(𝑡) [(𝑎𝑛𝜀
(𝜀𝑛(𝑡), 𝑡) +

𝑏𝑛𝜀
2

2
)𝑑𝑡 
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+𝑏𝑛𝜀
𝑑𝑊𝑛𝜀

(𝑡)]  

+ 𝑆𝑛(𝑡)(𝑎𝑛𝑑𝑡 + 𝑏𝑛𝑑𝑊𝑛(𝑡))  

× 𝑒𝜀𝑛(𝑡) [(𝑎𝑛𝜀
(𝜀𝑛(𝑡), 𝑡) +

𝑏𝑛𝜀
2

2
)𝑑𝑡 + 𝑏𝑛𝜀

𝑑𝑊𝑛𝜀
(𝑡)] 

 

𝑑𝑌𝑛(𝑡)

𝑌𝑛(𝑡)
= (𝑎𝑛 + 𝑎𝑛𝜀

(𝜀𝑛(𝑡), 𝑡) +
𝑏𝑛𝜀

2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
)𝑑𝑡 

(A. 3) 

+ 𝑏𝑛𝑑𝑊𝑛(𝑡) + 𝑏𝑛𝜀
𝑑𝑊𝑛𝜀

(𝑡). 
 

The new source of randomness 𝑑𝑊𝑛𝑌
(𝑡) ≝ 𝑏𝑛𝑑𝑊𝑛(𝑡) + 𝑏𝑛𝜀

𝑑𝑊𝑛𝜀
(𝑡) can be decomposed into the 

sum of 2 independent normally distributed random variables by re-writing 𝑑𝑊𝑛𝜀
(𝑡) as 𝑑𝑊𝑛𝜀

(𝑡) ≝

𝜌𝑛𝜀
𝑑𝑊𝑛(𝑡) + √1 − 𝜌𝑛𝜀

2𝑑𝑍𝑛𝜀
(𝑡), where 𝑑𝑊𝑛(𝑡) and 𝑑𝑍𝑛𝜀

(𝑡) are uncorrelated.  Therefore, 

𝑑𝑊𝑛𝑌
(𝑡) is also normally distributed with a mean of 0 and a variance of: 

𝕍{𝑑𝑊𝑛𝑌
(𝑡)} = 𝔼 {[𝑏𝑛𝑑𝑊𝑛(𝑡) + 𝑏𝑛𝜀

(𝜌𝑛𝜀
𝑑𝑊𝑛(𝑡) + √1 − 𝜌𝑛𝜀

2𝑍𝑛𝜀
(𝑡))]

2

} 
 

= 𝔼{[(𝑏𝑛 + 𝑏𝑛𝜀
𝜌𝑛𝜀

)𝑑𝑊𝑛(𝑡) + 𝑏𝑛𝜀
√1 − 𝜌𝑛𝜀

2 𝑑𝑍𝑛𝜀
]
2

} 
 

= 𝔼{𝑏𝑛
2 + 2𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
+ 𝑏𝑛𝜀

2 𝜌𝑛𝜀
2 + 𝑏𝑛𝜀

2 (1 − 𝜌𝑛𝜀
2 )}  

= 𝑏𝑛
2 + 2𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
+ 𝑏𝑛𝜀

2 . (A. 4) 

Therefore, 𝑑𝑊𝑛𝑌
(𝑡) ≝ 𝑏𝑛𝑑𝑊𝑛(𝑡) + 𝑏𝑛𝜀

𝑑𝑊𝑛𝜀
(𝑡) ∼ 𝒩(0, 𝑏𝑛

2 + 𝑏𝑛𝜀
2 + 2𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
) and 

𝑑𝑌𝑛(𝑡)

𝑌𝑛(𝑡)
 can 

be re-written as: 

𝑑𝑌𝑛(𝑡)

𝑌𝑛(𝑡)
= (𝑎𝑛 + 𝑎𝑛𝜀

(𝜀𝑛(𝑡), 𝑡) +
𝑏𝑛𝜀

2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
)𝑑𝑡 + 𝑏𝑛𝑌

𝑑𝑊𝑛𝑌
(𝑡), 

(A. 5) 

where 𝑏𝑛𝑌
2 = 𝑏𝑛

2 + 𝑏𝑛𝜀
2 + 2𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
. 
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Next, consider the solution 𝑌𝑛(𝑡).  Approximate 
𝑑𝑌𝑛(𝑡)

𝑌𝑛(𝑡)
 by 𝑑 ln𝑌𝑛(𝑡).  Then, by Itô’s lemma, 

𝑑 ln𝑌𝑛(𝑡) =
1

𝑌𝑛(𝑡)
𝑑𝑌𝑛(𝑡) −

1

2
⋅

1

𝑌𝑛
2(𝑡)

(𝑑𝑌𝑛(𝑡))
2
 

 

= (𝑎𝑛 + 𝑎𝑛𝜀
(𝜀𝑛(𝑡), 𝑡) +

𝑏𝑛𝜀
2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
)𝑑𝑡 

 

+ 𝑏𝑛𝑌
𝑑𝑊𝑛𝑌

(𝑡) −
1

2
⋅ 𝑏𝑛𝑌

2 𝑑𝑡 
 

= (𝑎𝑛 + 𝑎𝑛𝜀
(𝜀𝑛(𝑡), 𝑡) +

𝑏𝑛𝜀
2 − 𝑏𝑛𝑌

2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
)𝑑𝑡 + 𝑏𝑛𝑌

𝑑𝑊𝑛𝑌
(𝑡). 

(A. 6) 

Integrating gives: 

ln 𝑌𝑛(𝑡) = ln 𝑌𝑛(0) + (𝑎𝑛 +
𝑏𝑛𝜀

2 − 𝑏𝑛𝑌
2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
) 𝑡 + 𝑏𝑛𝑌

𝑊𝑛𝑌
(𝑡) 

(A. 7) 

+ ∫ 𝑎𝑛𝜀
(𝜀𝑛(𝑢), 𝑢)𝑑𝑢

𝑡

0

. 
 

Taking the exponential of both sides of Equation (A. 7) yields the solution: 

𝑌𝑛(𝑡) = 𝑌𝑛(0) exp [(𝑎𝑛 +
𝑏𝑛𝜀

2 − 𝑏𝑛𝑌
2

2
+ 𝑏𝑛𝑏𝑛𝜀

𝜌𝑛𝜀
) 𝑡 

(A. 8) 

+𝑏𝑛𝑌
𝑊𝑛𝑌

(𝑡) + ∫ 𝑎𝑛𝜀
(𝜀𝑛(𝑢), 𝑢)𝑑𝑢

𝑡

0

] 
 

Notice that when 𝜀𝑛(𝑡) = 0 for 0 ≤ 𝑡 ≤ 𝑇, 𝑌𝑛(𝑡) = 𝑆𝑛(𝑡), the solution for a standard geometric 

Brownian motion. 

𝑄. 𝐸. 𝐷. 

 

Proof of Proposition 2:  From Equations (11) and (12), the solution for 𝑐(𝑦, 𝜏) is: 
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𝑐(𝑦, 𝜏) = 𝑒−𝑟𝜏𝑤(𝑦, 𝜏)  

= 𝑒−𝑟𝜏 ∫ 𝑤(𝜉, 0)𝜙(𝑦, 𝜏; 𝜉)𝑑𝜉
∞

−∞

 
 

= 𝑒−𝑟𝜏 ∫ (𝑒𝜉 − 𝑋)
1

√𝑏𝑛𝑌
2𝜋

exp

[
 
 
 
 

−

(𝑦 + (𝑟 −
𝑏𝑛𝑌

2

2 ) 𝜏 − 𝜉)

2

2𝑏𝑛𝑌
2 𝜏

]
 
 
 
 

𝑑𝜉
∞

ln𝑋

 

 

= 𝑒−𝑟𝜏 ∫ 𝑒𝜉
∞

ln𝑋

1

√𝑏𝑛𝑌
2𝜋

exp

[
 
 
 
 

−

(𝑦 + (𝑟 −
𝑏𝑛𝑌

2

2 ) 𝜏 − 𝜉)

2

2𝑏𝑛𝑌
2 𝜏

]
 
 
 
 

𝑑𝜉 

 

− 𝑒−𝑟𝜏𝑋 ∫
1

√𝑏𝑛𝑌
2𝜋

exp

[
 
 
 
 

−

(𝑦 + (𝑟 −
𝑏𝑛𝑌

2

2 ) 𝜏 − 𝜉)

2

2𝑏𝑛𝑌
2 𝜏

]
 
 
 
 

𝑑𝜉
∞

ln𝑋

 

 

= 𝑒−𝑟𝜏𝑒𝑦+𝑟𝜏 ∫
1

√𝑏𝑛𝑌
2𝜋

exp

[
 
 
 
 

−

(𝑦 + (𝑟 +
𝑏𝑛𝑌

2

2 ) 𝜏 − 𝜉)

2

2𝑏𝑛𝑌
2 𝜏

]
 
 
 
 

𝑑𝜉
∞

ln𝑋

 

 

− 𝑒−𝑟𝜏𝑋𝑁

(

 
 

𝑦 + (𝑟 −
𝑏𝑛𝑌

2

2 ) 𝜏 − ln𝑋

𝑏𝑛𝑌√𝜏

)

 
 

 

 

= 𝑆𝑛𝑁

(

 
 

ln
𝑆𝑛
𝑋 + (𝑟 +

𝑏𝑛𝑌
2

2 ) 𝜏

2𝑏𝑛𝑌
2 𝜏

)

 
 

− 𝑒−𝑟𝜏𝑋𝑁

(

 
 

ln
𝑆𝑛
𝑋 + (𝑟 −

𝑏𝑛𝑌
2

2 ) 𝜏

𝑏𝑛𝑌√𝜏

)

 
 

, 

 

where 𝑦 = ln 𝑆𝑛, since the pricing error is assumed to 0 at time 0 (𝑌𝑛(0) = 𝑆𝑛(0)𝑒0 = 𝑆𝑛) 

𝑄. 𝐸. 𝐷. 
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Proof of Proposition 3:  First, the new option greeks (Ε𝑐 and Ρ𝑐) and the option vega, which differs 

materially in form from the standard Black-Scholes option greeks are derived.  The derivations for 

the call option greeks are provided and the put option greeks derivations are omitted, but can be 

derived by similar methods. 

i. 𝑣 =
𝜕𝑐̃

𝜕𝑏𝑛
 

𝜕𝑐̃

𝜕𝑏𝑛
=

𝜕

𝜕𝑏𝑛
[𝑆𝑛𝑁(𝑑̃1) − 𝑋𝑒−𝑟𝜏𝑁(𝑑̃2)] 

 

= 𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑏𝑌

𝜕𝑏𝑌

𝜕𝑏𝑛
− 𝑋𝑒−𝑟𝜏

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑏𝑌

𝜕𝑏𝑌

𝜕𝑏𝑛
 

 

=
𝜕𝑏𝑌

𝜕𝑏𝑛
[𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑏𝑌
− 𝑋𝑒−𝑟𝜏

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑏𝑌
] 

 

=
𝜕𝑏𝑌

𝜕𝑏𝑛
 𝑆𝑛𝑁′(𝑑̃1)√𝜏 

 

=
𝑏𝑛𝜀

𝜌 + 𝑏𝑛

√2𝑏𝑛𝑏𝑛𝜀
𝜌 + 𝑏𝑛

2 + 𝑏𝑛𝜀
2

𝑆𝑛𝑁′(𝑑̃1)√𝜏 
 

 

ii. 𝛦𝑐 =
𝜕𝑐̃

𝜕𝑏𝑛𝜀

 

𝜕𝑐̃

𝜕𝑏𝑛𝜀

=
𝜕

𝜕𝑏𝑛𝜀

[𝑆𝑛𝑁(𝑑̃1) − 𝑋𝑒−𝑟𝜏𝑁(𝑑̃2)] 
 

= 𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑏𝑌

𝜕𝑏𝑌

𝜕𝑏𝑛𝜀

− 𝑋𝑒−𝑟𝜏
𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑏𝑌

𝜕𝑏𝑌

𝜕𝑏𝑛𝜀

 
 

=
𝜕𝑏𝑌

𝜕𝑏𝑛𝜀

[𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑏𝑌
− 𝑋𝑒−𝑟𝜏

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑏𝑌
] 
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=
𝜕𝑏𝑌

𝜕𝑏𝑛𝜀

 𝑆𝑛𝑁′(𝑑̃1)√𝜏 
 

=
𝑏𝑛𝜌 + 𝑏𝑛𝜀

√2𝑏𝑛𝑏𝑛𝜀
𝜌 + 𝑏𝑛

2 + 𝑏𝑛𝜀
2

𝑆𝑛𝑁′(𝑑̃1)√𝜏 
 

 

iii. 𝛲𝑐 =
𝜕𝑐̃

𝜕𝜌𝑛𝜀

 

𝜕𝑐̃

𝜕𝜌𝑛𝜀

=
𝜕

𝜕𝜌𝑛𝜀

[𝑆𝑛𝑁(𝑑̃1) − 𝑋𝑒−𝑟𝜏𝑁(𝑑̃2)] 
 

= 𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑏𝑌

𝜕𝑏𝑌

𝜕𝜌𝑛𝜀

− 𝑋𝑒−𝑟𝜏
𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑏𝑌

𝜕𝑏𝑌

𝜕𝜌𝑛𝜀

 
 

=
𝜕𝑏𝑌

𝜕𝜌𝑛𝜀

[𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑏𝑌
− 𝑋𝑒−𝑟𝜏

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑏𝑌
] 

 

=
𝜕𝑏𝑌

𝜕𝜌𝑛𝜀

 𝑆𝑛𝑁′(𝑑̃1)√𝜏 
 

=
𝑏𝑛𝑏𝑛𝜀

√2𝑏𝑛𝑏𝑛𝜀
𝜌 + 𝑏𝑛

2 + 𝑏𝑛𝜀
2

𝑆𝑛𝑁′(𝑑̃1)√𝜏 
 

The remaining option greeks do not differ materially in from from the standard Black-

Scholes option greeks.  Rather, 𝑏𝑛 is replace with 𝑏𝑛𝑌
 everywhere in the formulas.  For 

completeness, the derivations are presented (following the derivation procedures in Chen, Lee, 

and Shih, 2010) regardless. 

iv. Δ𝑐 =
𝜕𝑐̃

𝜕𝑆𝑛
 

𝜕𝑐̃

𝜕𝑆𝑛
=

𝜕

𝜕𝑆𝑛
[𝑆𝑛𝑁(𝑑̃1) − 𝑋𝑒−𝑟𝜏𝑁(𝑑̃2)] 

 



32 

 

= 𝑁(𝑑̃1) + 𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑆𝑛
− 𝑋𝑒−𝑟𝜏

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑆𝑛
 

 

= 𝑁(𝑑̃1) + 𝑆𝑛𝑁′(𝑑̃1)
1

𝑆𝑛𝑏𝑛𝑌√𝜏
− 𝑋𝑒−𝑟𝜏𝑁′(𝑑̃1)

𝑆𝑛

𝑋
𝑒𝑟𝜏

1

𝑆𝑛𝑏𝑛𝑌√𝜏
 

 

= 𝑁(𝑑̃1) 
 

 

v. 𝛩𝑐 = −
𝜕𝑐̃

𝜕𝜏
 

−
𝜕𝑐̃

𝜕𝜏
=

𝜕

𝜕𝜏
[−𝑆𝑛𝑁(𝑑̃1) + 𝑋𝑒−𝑟𝜏𝑁(𝑑̃2)] 

 

= −𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝜏
+ (−𝑟)𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) + 𝑋𝑒−𝑟𝜏

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝜏
 

 

= −𝑆𝑛𝑁′(𝑑̃1) [
𝑟 +

𝑏𝑛𝑌
2

2
𝑏𝑛𝑌√𝜏

−
ln

𝑆𝑛
𝑋

2𝑏𝑛𝑌
𝜏

3
2

−
𝑟 +

𝑏𝑛𝑌
2

2
2𝑏𝑛𝑌√𝜏

] − 𝑟𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) 

 

+ 𝑋𝑒−𝑟𝜏𝑁′(𝑑̃1)
𝑆𝑛

𝑋
𝑒𝑟𝜏 [

𝑟

𝑏𝑛𝑌√𝜏
−

ln
𝑆𝑛
𝑋

2𝑏𝑛𝑌
𝜏

3
2

−
𝑟 +

𝑏𝑛𝑌
2

2

2𝑏𝑛𝑌√𝜏
] 

 

= −𝑆𝑛𝑁′(𝑑̃1)

𝑏𝑛𝑌
2

2
𝑏𝑛𝑌√𝜏

− 𝑟𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) 

 

= −
𝑆𝑛𝑏𝑛𝑌

2√𝜏
𝑁′(𝑑̃1) − 𝑟𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) 

 

 

vi. 𝛤𝑐 =
𝜕2𝑐̃

𝜕𝑆𝑛
2 
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𝜕2𝑐̃

𝜕𝑆𝑛
2

=
𝜕Δ𝑐

𝜕𝑆𝑛
 

 

=
𝜕

𝜕𝑆𝑛
𝑁(𝑑̃1) 

 

=
𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑆𝑛
 

 

= 𝑁′(𝑑̃1)

1
𝑆𝑛

𝑏𝑛𝑌√𝜏
 

 

=
1

𝑆𝑛𝑏𝑛𝑌√𝜏
𝑁′(𝑑̃1) 

 

   

vii. 𝜌𝑐 =
𝜕𝑐̃

𝜕𝑟
 

𝜕𝑐̃

𝜕𝑟
=

𝜕

𝜕𝑟
[𝑆𝑛𝑁(𝑑̃1) − 𝑋𝑒−𝑟𝜏𝑁(𝑑̃2)] 

 

= 𝑆𝑛

𝜕𝑁(𝑑̃1)

𝜕𝑑̃1

𝜕𝑑̃1

𝜕𝑟
+ 𝜏𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) −

𝜕𝑁(𝑑̃2)

𝜕𝑑̃2

𝜕𝑑̃2

𝜕𝑟
𝑋𝑒−𝑟𝜏 

 

= 𝑆𝑛𝑁′(𝑑̃1)
√𝜏

𝑏𝑛𝑌

+ 𝜏𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) − 𝑋𝑒−𝑟𝜏𝑁′(𝑑̃2)
√𝜏

𝑏𝑛𝑌

 
 

= 𝑆𝑛𝑁′(𝑑̃1)
√𝜏

𝑏𝑛𝑌

+ 𝜏𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) − 𝑋𝑒−𝑟𝜏𝑁′(𝑑̃1)
𝑆𝑛

𝑋
𝑒𝑟𝜏 √𝜏

𝑏𝑛𝑌

 
 

= 𝜏𝑋𝑒−𝑟𝜏𝑁(𝑑̃2) 
 

𝑄. 𝐸. 𝐷. 
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Proof of Proposition 5:  The value today (time 0) of a European call option on 𝑌𝑛 with an 

expiration date of 𝑇, with stochastic interest rates, is: 

𝑐0 = 𝔼ℚ {𝑒−∫ 𝑟(𝑡)𝑑𝑡
𝑇

0 (𝑒ln𝑌(𝑇) − 𝑒ln𝑋) ⋅ 𝟏ln𝑌(𝑇)>ln𝑋} (A. 9) 

= 𝔼ℚ {𝑒−∫ 𝑟(𝑡)𝑑𝑡
𝑇

0 𝑒ln𝑌(𝑇) ⋅ 𝟏ln𝑌(𝑇)>ln𝑋}  

− 𝔼ℚ {𝑒−∫ 𝑟(𝑡)𝑑𝑡
𝑇

0 𝑒ln𝑋 ⋅ 𝟏ln𝑌(𝑇)>ln𝑋},  

where 𝔼ℚ{⋅} denotes that the expectation is taken under the risk-neutral measure ℚ.  Let 𝑄1 and 

𝑄2 denote the changes of numeraire associated with the observed underlying asset price 𝑌(𝑡) and 

the zero-coupon bond price 𝐵(𝑡, 𝑇) = 𝔼 {exp (−∫ 𝑟(𝑢)𝑑𝑢
𝑇

𝑡
)}, respectively.  Then the two Radon-

Nikodym derivatives are: 

𝑑𝑄1

𝑑ℚ
(𝑡) =

𝑌(𝑡)𝐻(0)

𝐻(𝑡)𝑌(0)
= 𝑒−∫ 𝑟(𝑢)𝑑𝑢

𝑡

0
𝑌(𝑡)

𝑌(0)
= 𝑔1(𝑡), 

(A. 10) 

𝑑𝑄2

𝑑ℚ
(𝑡) =

𝐵(𝑡, 𝑇)𝐻(0)

𝐻(𝑡)𝐵(0, 𝑇)
= 𝑒−∫ 𝑟(𝑢)𝑑𝑢

𝑡

0
𝐵(𝑡, 𝑇)

𝐵(0, 𝑇)
= 𝑔2(𝑡), 

(A. 11) 

where 𝐻(𝑡) = exp (∫ 𝑟(𝑢)𝑑𝑢
𝑡

0
).  Since the pricing error factor 𝑒𝜀(𝑡) is multiplicative, 𝑌(𝑡) is 

always positive, which makes it a valid numeraire.  The call option value at time 0 can be re-

written as: 

𝑐0 = 𝑌(0)𝔼𝑄1{𝟏ln𝑌(𝑇)>ln𝑋} − 𝐵(0, 𝑇)𝑋𝔼𝑄2{𝟏ln𝑌(𝑇)>ln𝑋}  

= 𝑆𝐹1
𝑄1(𝟏ln𝑌(𝑇)>ln𝑋) − 𝐵(0, 𝑇)𝑋𝐹2

𝑄2(𝟏ln𝑌(𝑇)>ln𝑋), (A. 12) 

where 𝐹
𝑗

𝑄𝑗 , 𝑗 = 1,2 are standard normal cumulative probability distributions and where 𝑌(0) = 𝑆.  

Taking the Fourier transform of probabilities yields the following characteristic functions for 𝐹
𝑗

𝑄𝑗
: 
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𝑓𝑗(𝜙) = 𝔼𝑄𝑗{𝑒𝑖𝜙 ln𝑌(𝑇)}, 𝑗 = 1,2 (A. 13) 

= 𝔼ℚ{𝑔𝑗(𝑇)𝑒𝑖𝜙 ln𝑌(𝑇)}  

where 𝑖 is a solution to the equation 𝑥2 = 1 (more popularly written as 𝑖 = √−1).  The density 

function for ln 𝑌(𝑇) is then the inverse Fourier transform of the characteristic function: 

𝑞𝑗(ln 𝑌(𝑇)) =
1

2𝜋
 ∫𝑓𝑗(𝜙)𝑒−𝑖𝜙 ln𝑌(𝑇)𝑑𝜙

ℝ

, 𝑗 = 1,2. 
(A. 14) 

Using these density functions, the cumulative density functions are 

𝐹𝑗(ln 𝑌(𝑡) > ln 𝑋) = ∫ 𝑞𝑗(ln 𝑌(𝑇))𝑑 ln 𝑌(𝑇)
∞

ln𝑋

 
 

= ∫ (
1

2𝜋
 ∫𝑓𝑗(𝜙)𝑒−𝑖𝜙 ln𝑋𝑑𝜙

ℝ

) 𝑑 ln 𝑌(𝑇)
∞

ln𝑋

 
 

=
1

2𝜋
∫ 𝑓𝑗(𝜙) (∫ 𝑒−𝑖𝜙 ln𝑌(𝑇)𝑑 ln𝑌(𝑇)

∞

ln𝑋

)𝑑𝜙
ℝ

 
 

=
1

2
+

1

2𝜋
∫ 𝑓𝑗(𝜙)

𝑒−𝑖𝜙 ln𝑋

𝑖𝜙
𝑑𝜙

ℝ

, 
(A. 15) 

and the final line, with the appropriate characteristic function 𝑓𝑗(𝜙), is substituted into the second 

line of 𝑐0 above to attain the European call option price. 

 The characteristic function of a sum of independent random variables is equal to the 

product of the characteristic functions of each of the random variables.  Therefore, to add stochastic 

factors into the model is as easy as multiplying the characteristic functions for each the stochastic 

factors and then substituting the resulting characteristic function into Equation (A. 15) and then 

substituting Equation (A. 15) into Equation (A. 12) (see Chapter 9.2.1 of Zhu, 2010).  That is to 

say: 



36 

 

𝑓𝑗(𝜙) = 𝑒𝑖𝜙 ln𝑌(0)𝑓𝑗
𝑆𝑉(𝜙) × 𝑓𝑗

𝑆𝐼(𝜙) × 𝑓𝑗
𝑃𝐽(𝜙) × 𝑓𝑗

𝐿𝐽(𝜙), 𝑗 = 1,2,  

𝑓𝑗(𝜙) = 𝑒𝑖𝜙 ln𝑆𝑓𝑗
𝑆𝑉(𝜙) × 𝑓𝑗

𝑆𝐼(𝜙) × 𝑓𝑗
𝑃𝐽(𝜙) × 𝑓𝑗

𝐿𝐽(𝜙), 𝑗 = 1,2, (A. 16) 

where ln 𝑌(0) = ln 𝑆(0), since at time 0, the pricing error is assumed to be equal to 0.  Each of 

the characteristic functions 𝑓𝑗
𝑎(𝜙) for 𝑎 ∈ {𝑆𝑉, 𝑆𝐼, 𝑃𝐽, 𝐿𝐽} is with respect to the true underlying 

asset price 𝑆. 

𝑄. 𝐸. 𝐷. 

 

Proof of Proposition 6:  Normalize, the current time 𝑡 to 0.  The value of an American put option 

is given by its maximum value, if exercised anytime at or prior to maturity.  That is, 

𝑃(𝑌𝑛(0), 𝜏) = sup
0≤𝑡∗≤𝑇

𝔼ℚ{𝑒−𝑟𝑡∗
max(𝑋 − 𝑌𝑛(0), 0)}, (A. 17) 

where 𝑡∗ is the stopping time at which the American put option would be optimally exercises, 

which is optimized at: 

𝑡∗ = inf
𝑢

{0 ≤ 𝑢 ≤ 𝑇:𝑃(𝑌𝑛(𝑢), 𝑢) = max(𝑋 − 𝑌𝑛(𝑢), 0)}. (A. 18) 

Therefore, the American put option is exercised at the first time its value crosses below the payoff 

𝑋 − 𝑌𝑛(𝑡) for 𝑌𝑛(𝑡) < 𝑋. 

 Since the holder of the American put option can invest the proceeds in the amount 𝑋 at the 

risk-free rate, if exercised early, then the early exercise premium is a function of 𝑟𝑋.  Then, the 

current price of an American put option can be decomposed into its European option value plus an 

early exercise premium (see Myneni, 1992): 
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𝑃(𝑌𝑛(0), 𝜏) = 𝔼ℚ {𝑒−𝑟𝜏(𝑋 − 𝑌𝑛(0))
+
} + 𝔼ℚ {∫ 𝑒−𝑟𝑢𝑟𝑋𝟏𝑌𝑛(𝑢)<𝑋

𝜏

0

𝑑𝑢}, 
(A. 19) 

= 𝑝̃(𝑆, 𝜏) + 𝑒̃(𝑆, 𝜏),  

where (recall that 𝑌𝑛(0) = 𝑆) 

𝑝̃(𝑆, 𝜏) = 𝔼ℚ{𝑒−𝑟𝜏(𝑋 − 𝑆)+}, (A. 20) 

𝑒̃(𝑆, 𝜏) = 𝔼ℚ {∫ 𝑒−𝑟𝑢𝑟𝑋𝟏𝑌𝑛(𝑢)<𝑋

𝜏

0

𝑑𝑢}. 
(A. 21) 

The first term on the r.h.s. is given in Proposition 2 and is the modified Black-Scholes put option 

price, while the second term can be re-written as: 

𝑒̃(𝑆, 𝜏) = ∫ 𝑒−𝑟𝑢 ∫ 𝑟𝑋𝜓(𝑌𝑛(𝑢); 𝑆)𝑑𝑌𝑛

𝑌𝑛
∗(𝑢)

0

𝑑𝑢
𝜏

0

, 
(A. 22) 

where 𝜓 is the transition density for 𝑌𝑛.  Evaluating the above integral gives (see Kwok, 2008 ch. 

5.2.3): 

𝑒̃(𝑆, 𝜏) = ∫ 𝑒−𝑟𝑢
𝜏

0

𝑟𝑋𝑁(−𝑑̃𝑢,2)𝑑𝑢, 
(A. 23) 

where 

𝑑̃𝑢,2 =

ln
𝑆

𝑌𝑛
∗(𝜏 − 𝑢) + (𝑟 −

𝑏𝑛𝑌
2

2 )𝑢

𝑏𝑛𝑌√𝑢
 

(A. 24) 

and 𝑢 is the time elapsed from the current time.  Putting the equations together, gives the analytic 

price for an American put option on an underlying asset with pricing errors: 

𝑃(𝑆, 𝜏) = 𝑝̃(𝑆, 𝜏) + ∫ 𝑒−𝑟𝑢
𝜏

0

𝑟𝑋𝑁(−𝑑̃𝑢,2)𝑑𝑢. 
(A. 25) 

Applying the boundary condition 𝑃(𝑆∗, 𝜏) = 𝑋 − 𝑌𝑛
∗(𝜏) gives: 
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𝑋 − 𝑌𝑛
∗(𝜏) = 𝑝̃(𝑆, 𝜏) + ∫ 𝑒−𝑟𝑢

𝜏

0

𝑟𝑋𝑁(−𝑑̃𝑢,2)𝑑𝑢 
 

𝑌𝑛
∗(𝜏) = 𝑋 − 𝑝̃(𝑆, 𝜏) − ∫ 𝑒−𝑟𝑢

𝜏

0

𝑟𝑋𝑁(−𝑑̃𝑢,2)𝑑𝑢. 
(A. 26) 

 The optimal exercise price 𝑌𝑛
∗(𝜏) can be solved numerically by numerically solving the 

integral representing the early exercise premium.  Closed-form solutions for 𝑌𝑛
∗(𝜏) do exist in a 

Black-Scholes world, however, in the limits as 𝜏 → 0+ and 𝜏 → ∞ (see Evans, Kuske, and Keller, 

2002, and Kowk, 2008 ch. 5, respectively) and are: 

lim
𝜏→0+

𝑌𝑛
∗(𝜏) = 𝑋 − 𝑋𝑏𝑛𝑌

√𝜏 ln (
𝑏𝑛𝑌

2

8𝜋𝜏𝑟2
), 

(A. 27) 

lim
𝜏→∞

𝑌𝑛
∗(𝜏) =

𝜇−

𝜇− − 1
𝑋, (A. 28) 

where 

𝜇− =

−(𝑟 −
𝑏𝑛𝑌

2

2 ) − √(𝑟 −
𝑏𝑛𝑌

2

2
)
2

+ 2𝑏𝑛𝑌
2 𝑟

𝑏𝑛𝑌
2

, 

(A. 29) 

and where 𝑏𝑛𝑌
 has been substituted in place of the 𝑏𝑛 variable that would prevail in the standard 

Black-Scholes framework without pricing errors in the underlying asset.  Since 
𝜕 lim

𝜏→0+
𝑌𝑛

∗(𝜏)

𝜕𝜌𝑛𝜀

 and 

𝜕 lim
𝜏→0+

𝑌𝑛
∗(𝜏)

𝜕𝜌𝑛𝜀

 are both negative and 𝑏𝑛 < 𝑏𝑛𝑌
 for 𝜌𝑛𝜀

∈ (−
𝑏𝑛𝜀

2𝑏𝑛
, 1], it is the case that: 
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𝑌𝑛
∗(𝜏) < 𝑆𝑛

∗(𝜏), 𝜌𝑛𝜀
∈ (−

𝑏𝑛𝜀

2𝑏𝑛
, 1]

𝑌𝑛
∗(𝜏) = 𝑆𝑛

∗(𝜏), 𝜌𝑛𝜀
= −

𝑏𝑛𝜀

2𝑏𝑛

𝑌𝑛
∗(𝜏) > 𝑆𝑛

∗(𝜏), 𝜌𝑛𝜀
∈ [−1, −

𝑏𝑛𝜀

2𝑏𝑛
)

. 

(A. 30) 

𝑄. 𝐸. 𝐷. 

 

Proof of Proposition 7:  Merton shows that in the standard Black-Scholes framework (in the 

absence of pricing errors in the firm’s underlying stock price), the value of equity is: 

𝐸𝑛(𝐴𝑛, 𝜏) = 𝐴𝑛𝑁(𝑑̂1) − 𝐷𝑛𝑒−𝑟𝜏𝑁(𝑑̂2), (A. 31) 

𝑑̂1 =

ln
𝐴𝑛
𝐷𝑛

+ (𝑟 +
𝑏𝑛𝐴

2

2 ) 𝜏

𝑏𝑛𝐴√𝜏
, 𝑑̂2 = 𝑑̂1 − 𝑏𝑛𝐴√𝜏, 

(A. 32) 

where 𝑏𝑛𝐴
 is the volatility of the firm’s assets, which is unobservable.   

Jones, Mason, and Rosenfeld (1984), however, show that in the standard Black-Scholes 

framework (in the absence of pricing errors in the firm’s underlying stock price), the equity 

volatility and asset volatility are related by 𝑏𝑛 = 𝑏𝑛𝐴

𝜕𝐸𝑛

𝜕𝐴

𝐴𝑛(0)

𝐸𝑛(0)
.  Re-arranging gives: 

𝑏𝑛𝐴
= 𝑏𝑛 (

𝜕𝐸𝑛

𝜕𝐴𝑛
)
−1 𝐸𝑛(0)

𝐴𝑛(0)
 

 

= 𝑏𝑛

1

𝑁(𝑑̂1)

𝐸𝑛(0)

𝐴𝑛(0)
. 

(A. 33) 

Substitute in 𝑏𝑛𝑌
 in place of 𝑏𝑛 to get the relationship that holds, when the underlying stock price 

has pricing errors (see Proposition 1) to attain: 
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𝑏̃𝑛𝐴
= 𝑏𝑛𝑌

1

𝑁 (𝑑̃̂1)

𝐸𝑛(0)

𝐴𝑛(0)
, 

(A. 34) 

𝑑̃̂1 =

ln
𝐴𝑛
𝐷𝑛

+ (𝑟 +
𝑏̃𝑛𝐴

2

2 ) 𝜏

𝑏̃𝑛𝐴√𝜏
. 

(A. 35) 

Since 
𝜕𝑏̃𝑛𝐴

𝜕𝑏𝑛𝑌

> 0 and 𝑏𝑛𝑌
> 𝑏𝑛 for 𝜌𝑛𝜀

∈ (−
𝑏𝑛𝜀

2𝑏𝑛
, 1], it is the case that 𝑏̃𝑛𝐴

> 𝑏𝑛𝐴
 for 𝜌𝑛𝜀

∈

(−
𝑏𝑛𝜀

2𝑏𝑛
, 1].  Therefore, since 

𝜕𝐸𝑛

𝜕𝑏𝑛𝐴

> 0, 𝐸̃𝑛 − 𝐸𝑛 > 0 for 𝜌𝑛𝜀
∈ (−

𝑏𝑛𝜀

2𝑏𝑛
, 1], where the firm’s 

equity value, in the presence of pricing errors in its stock price, is: 

𝐸̃𝑛(𝐴𝑛, 𝜏) = 𝐴𝑛𝑁 (𝑑̃̂1) − 𝐷𝑛𝑒−𝑟𝜏𝑁 (𝑑̃̂2), 
(A. 36) 

𝑑̃̂2 = 𝑑̃̂1 − 𝑏̃𝑛𝐴√𝜏. (A. 37) 

𝑄. 𝐸. 𝐷. 

 

Proof of Proposition 8:  Let the covariance matrix between observed underlying assets be: 

𝐂 = [
𝐶1,1 𝐶1,2

𝐶2,1 𝐶2,2
] 

(A. 38) 

𝐶1,1 = 𝑏1,𝑌
2 = 𝑏1

2 + 𝑏𝜀1
2 + 2𝑏1𝑏𝜀1

𝜌1,𝜀1
, (A. 39) 

𝐶1,2 = 𝐶2,1 = 𝜌1,2𝑏1𝑏2 + 𝜌𝜀1,𝜀2
𝑏𝜀1

𝑏𝜀2
+ 𝜌1,𝜀2

𝑏1𝑏𝜀2
+ 𝜌2,𝜀1

𝑏2𝑏𝜀1
, (A. 40) 

𝐶2,2 = 𝑏2,𝑌
2 = 𝑏2

2 + 𝑏𝜀2
2 + 2𝑏2𝑏𝜀2

𝜌2,𝜀2
 (A. 41) 

so that 

𝑑𝐘𝑡 = 𝛍𝑡𝒅𝒕 + 𝐂̂𝑑𝐖𝑡 , (A. 42) 

where 𝑑𝐖𝑡 = (𝑑𝑊1, 𝑑𝑊2)𝑡
′  is a vector of independent standard Brownian motion innovations and 

where 
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𝜇𝑖,𝑡 = 𝑎𝑖 + 𝑞𝑖 + 𝑎𝑖,𝜀(𝜀𝑖(𝑡), 𝑡) +
𝑏𝑖,𝜀𝑖

2

2
+ 𝑏𝑖𝑏𝑖,𝜀𝑖

𝜌𝑖,𝜀𝑖
, 𝑖 ∈ {1,2} 

(A. 43) 

𝐂 = 𝐂̂𝐂̂′, (A. 44) 

where 𝐂̂ is lower-triangular. 

Consider a portfolio that is short a contingent claim and long 𝐻𝑛(𝑡) units of the underlying 

assets for 𝑛 = {1,2}.  Therefore, the problem for the contingent claim writer is to exactly hedge 

his contingent claim obligation.  Precisely, the contingent claim writer wants to find a value 𝑉(0) 

such that when invested in a self-financing trading strategy, yields the contingent claim payoff 

𝑉(𝐘, 𝑡), where 𝐘 = (𝑌1, 𝑌2)
′: 

0 = −(𝑉(𝐘, 𝑡) − 𝑉(𝐘, 0)) + 𝐇 • 𝐘, (A. 45) 

where 𝐇 = (𝐻1, 𝐻2)
′ and 𝐇 • 𝐘 = ∑ ∫ 𝐻𝑖(𝑢)𝑑𝑌𝑖(𝑢)

𝑡

0
2
𝑖=1 . 

The gradient and Hessian matrix of 𝑉(𝐘, 𝑡) w.r.t. 𝐘 are: 

𝐷1𝑉𝐘 = (𝑉𝑌1(𝑡), 𝑉𝑌2(𝑡))
′
, (A. 46) 

𝐷2𝑉𝐘 = (
𝑉𝑌1(𝑡)𝑌1(𝑡) 𝑉𝑌1(𝑡)𝑌2(𝑡)

𝑉𝑌2(𝑡)𝑌1(𝑡) 𝑉𝑌2(𝑡)𝑌2(𝑡)
). 

(A. 47) 

The SDE corresponding to Equation (i) is: 

0 = −𝑑𝑉(𝑡) + 𝐇(𝑡)′𝑑𝐘(𝑡) (A. 48) 

0 = −(𝑉𝑡 + (𝐷1𝑉𝐘)
′𝑑𝐘(𝑡) +

1

2
𝑑𝐘(𝑡)′(𝐷2𝑉𝐘)𝑑𝐘(𝑡)) + 𝐇(𝑡)′𝑑𝐘(𝑡) 

(A. 49) 

0 = −𝑉𝑡 + (𝐇(𝑡) − 𝐷1𝑉𝐘)
′𝑑𝐘(𝑡) −

1

2
𝑑𝐘(𝑡)′(𝐷2𝑉𝐘)𝑑𝐘(𝑡). 

(A. 50) 
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Therefore, setting 𝐇(𝑡) = 𝜔𝐷1𝑉𝐘, where 𝜔 = 1 for a call option and 𝜔 = −1 for a put option, 

makes the portfolio gain in the final line deterministic and the following Black-Scholes equation 

is attained: 

𝑉𝑡 +
1

2
𝐂̂(𝐷2𝑉𝐘)𝐂̂

′ + 𝑟(𝐷1𝑉𝒀)
′𝒀(𝑡) − 𝑟𝑉 = 0, 

(A. 51) 

which, when imposing the boundary condition 𝑉(𝐘, 𝑇) = max(0, 𝑌1(𝑇) − 𝑌2(𝑇)) has the 

Margrabe (1978) solution: 

𝑉(𝐘, 𝜏, 𝜔) = 𝑒−𝑞1𝜏𝑆1𝑁(𝜔𝑑1)𝜔 − 𝑒−𝑞2𝜏𝑆2𝑁(𝜔𝑑2)𝜔. (A. 52) 
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Table 1 

Modified call option price 

This table presents modified Black-Scholes call option prices in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option prices when there are no pricing errors in the underlying asset.  Panels B, C, and 

D respectively consider annualized pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the 

correlation between innovations in underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing 

parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 = 0.03. 

     𝐾     
𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 

 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC 21.23 16.45 11.98 8.07 4.98 2.80 1.43 0.66 0.28 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 21.19 16.27 11.34 6.45 2.27 0.33 0.01 0.00 0.00 

-0.75 21.19 16.28 11.46 7.06 3.61 1.47 0.47 0.12 0.02 

-0.50 21.21 16.36 11.75 7.69 4.49 2.32 1.05 0.42 0.15 

-0.25 21.25 16.51 12.10 8.26 5.21 3.02 1.61 0.79 0.36 

0.00 21.33 16.70 12.45 8.78 5.82 3.63 2.13 1.18 0.61 

0.25 21.43 16.91 12.80 9.25 6.37 4.18 2.61 1.56 0.89 

0.50 21.55 17.14 13.14 9.69 6.87 4.68 3.07 1.94 1.18 

0.75 21.69 17.37 13.47 10.11 7.33 5.14 3.49 2.30 1.47 

1.00 21.84 17.60 13.79 10.50 7.76 5.58 3.90 2.66 1.77 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 21.19 16.28 11.46 7.06 3.61 1.47 0.47 0.12 0.02 

-0.75 21.28 16.60 12.27 8.52 5.53 3.34 1.87 0.98 0.48 

-0.50 21.55 17.14 13.14 9.69 6.87 4.68 3.07 1.94 1.18 

-0.25 21.91 17.72 13.95 10.68 7.97 5.78 4.09 2.83 1.91 

0.00 22.31 18.29 14.69 11.56 8.91 6.74 5.01 3.66 2.63 

0.25 22.73 18.85 15.38 12.35 9.76 7.61 5.84 4.43 3.32 

0.50 23.15 19.39 16.03 13.08 10.54 8.39 6.61 5.16 3.99 

0.75 23.56 19.91 16.64 13.75 11.25 9.12 7.33 5.84 4.62 

1.00 23.98 20.42 17.22 14.39 11.92 9.80 8.00 6.49 5.23 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 23.15 19.39 16.03 13.08 10.54 8.39 6.61 5.16 3.99 

-0.75 23.98 20.42 17.22 14.39 11.92 9.80 8.00 6.49 5.23 

-0.50 24.78 21.37 18.29 15.56 13.15 11.05 9.24 7.70 6.38 

-0.25 25.54 22.25 19.28 16.62 14.26 12.19 10.38 8.81 7.45 

0.00 26.28 23.09 20.20 17.61 15.29 13.24 11.43 9.84 8.46 

0.25 26.98 23.88 21.06 18.52 16.24 14.21 12.41 10.82 9.41 

0.50 27.65 24.63 21.88 19.39 17.14 15.13 13.33 11.73 10.31 

0.75 28.30 25.35 22.65 20.20 17.99 16.00 14.21 12.60 11.17 

1.00 28.93 26.04 23.39 20.98 18.79 16.82 15.04 13.44 12.00 
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Table 2 

Modified call option delta 

This table presents modified Black-Scholes call option deltas in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option deltas when there are no pricing errors in the underlying asset.  Panels B, C, and 

D respectively consider annualized pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the 

correlation between innovations in underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing 

parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 = 0.03. 

         𝐾         

𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC 0.99 0.96 0.88 0.75 0.58 0.40 0.24 0.13 0.06 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 1.00 1.00 1.00 0.97 0.67 0.17 0.01 0.00 0.00 

-0.75 1.00 0.99 0.96 0.83 0.60 0.33 0.14 0.04 0.01 

-0.50 1.00 0.97 0.91 0.78 0.58 0.38 0.21 0.10 0.04 

-0.25 0.99 0.95 0.87 0.74 0.58 0.40 0.25 0.14 0.07 

0.00 0.97 0.93 0.84 0.72 0.57 0.42 0.29 0.18 0.11 

0.25 0.96 0.91 0.82 0.71 0.57 0.43 0.31 0.21 0.13 

0.50 0.95 0.89 0.80 0.69 0.57 0.44 0.33 0.23 0.16 

0.75 0.94 0.88 0.79 0.69 0.57 0.45 0.34 0.25 0.18 

1.00 0.92 0.86 0.78 0.68 0.57 0.46 0.36 0.27 0.20 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 1.00 0.99 0.96 0.83 0.60 0.33 0.14 0.04 0.01 

-0.75 0.98 0.94 0.86 0.73 0.57 0.41 0.27 0.16 0.09 

-0.50 0.95 0.89 0.80 0.69 0.57 0.44 0.33 0.23 0.16 

-0.25 0.92 0.86 0.77 0.68 0.57 0.46 0.36 0.28 0.20 

0.00 0.90 0.83 0.75 0.66 0.57 0.48 0.39 0.31 0.24 

0.25 0.88 0.81 0.74 0.66 0.57 0.49 0.41 0.33 0.27 

0.50 0.86 0.80 0.73 0.65 0.57 0.49 0.42 0.35 0.29 

0.75 0.85 0.79 0.72 0.65 0.58 0.50 0.43 0.37 0.31 

1.00 0.84 0.78 0.71 0.65 0.58 0.51 0.44 0.38 0.33 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 0.86 0.80 0.73 0.65 0.57 0.49 0.42 0.35 0.29 

-0.75 0.84 0.78 0.71 0.65 0.58 0.51 0.44 0.38 0.33 

-0.50 0.82 0.76 0.71 0.64 0.58 0.52 0.46 0.41 0.35 

-0.25 0.81 0.75 0.70 0.64 0.59 0.53 0.47 0.42 0.38 

0.00 0.80 0.75 0.70 0.64 0.59 0.54 0.49 0.44 0.39 

0.25 0.79 0.74 0.69 0.64 0.59 0.54 0.50 0.45 0.41 

0.50 0.78 0.74 0.69 0.64 0.60 0.55 0.51 0.46 0.42 

0.75 0.78 0.73 0.69 0.64 0.60 0.56 0.51 0.47 0.44 

1.00 0.77 0.73 0.69 0.65 0.60 0.56 0.52 0.48 0.45 
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Table 3 

Modified call option gamma 

This table presents modified Black-Scholes call option gammas in Panel B-D when the underlying asset contains pricing errors.  

Panel A contains the baseline Black-Scholes call option gammas when there are no pricing errors in the underlying asset.  Panels 

B, C, and D respectively consider annualized pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  

𝜌𝑛,𝜀 is the correlation between innovations in underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining 

pricing parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 = 0.03. 

         𝐾         

𝜌𝑛,𝜀 80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC 0.0027 0.0085 0.0186 0.0299 0.0369 0.0363 0.0294 0.0200 0.0118 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 0.0000 0.0000 0.0003 0.0188 0.1023 0.0727 0.0089 0.0002 0.0000 

-0.75 0.0002 0.0022 0.0125 0.0351 0.0547 0.0512 0.0308 0.0127 0.0037 

-0.50 0.0015 0.0064 0.0175 0.0321 0.0417 0.0406 0.0307 0.0186 0.0094 

-0.25 0.0033 0.0092 0.0188 0.0289 0.0350 0.0346 0.0287 0.0203 0.0126 

0.00 0.0048 0.0108 0.0188 0.0264 0.0308 0.0307 0.0267 0.0206 0.0143 

0.25 0.0061 0.0117 0.0184 0.0244 0.0278 0.0278 0.0249 0.0203 0.0152 

0.50 0.0069 0.0122 0.0179 0.0228 0.0255 0.0256 0.0235 0.0198 0.0156 

0.75 0.0076 0.0124 0.0173 0.0214 0.0237 0.0239 0.0222 0.0192 0.0157 

1.00 0.0081 0.0124 0.0168 0.0203 0.0222 0.0224 0.0211 0.0187 0.0156 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 0.0002 0.0022 0.0125 0.0351 0.0547 0.0512 0.0308 0.0127 0.0037 

-0.75 0.0041 0.0102 0.0189 0.0276 0.0327 0.0325 0.0276 0.0206 0.0136 

-0.50 0.0069 0.0122 0.0179 0.0228 0.0255 0.0256 0.0235 0.0198 0.0156 

-0.25 0.0082 0.0124 0.0165 0.0198 0.0216 0.0218 0.0206 0.0184 0.0156 

0.00 0.0088 0.0122 0.0153 0.0177 0.0191 0.0193 0.0186 0.0171 0.0151 

0.25 0.0089 0.0118 0.0143 0.0161 0.0172 0.0175 0.0170 0.0159 0.0144 

0.50 0.0089 0.0113 0.0134 0.0149 0.0158 0.0161 0.0158 0.0150 0.0138 

0.75 0.0088 0.0109 0.0126 0.0140 0.0147 0.0150 0.0148 0.0142 0.0133 

1.00 0.0087 0.0105 0.0120 0.0131 0.0138 0.0141 0.0140 0.0135 0.0127 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 0.0089 0.0113 0.0134 0.0149 0.0158 0.0161 0.0158 0.0150 0.0138 

-0.75 0.0087 0.0105 0.0120 0.0131 0.0138 0.0141 0.0140 0.0135 0.0127 

-0.50 0.0084 0.0098 0.0110 0.0119 0.0124 0.0127 0.0126 0.0123 0.0118 

-0.25 0.0080 0.0092 0.0102 0.0109 0.0114 0.0116 0.0116 0.0114 0.0111 

0.00 0.0077 0.0087 0.0095 0.0101 0.0105 0.0108 0.0108 0.0107 0.0104 

0.25 0.0073 0.0082 0.0089 0.0095 0.0099 0.0101 0.0101 0.0101 0.0099 

0.50 0.0071 0.0078 0.0085 0.0089 0.0093 0.0095 0.0096 0.0095 0.0094 

0.75 0.0068 0.0075 0.0080 0.0085 0.0088 0.0090 0.0091 0.0091 0.0090 

1.00 0.0066 0.0072 0.0077 0.0081 0.0084 0.0086 0.0087 0.0087 0.0086 
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Table 4 

Modified call option theta 

This table presents modified Black-Scholes call option thetas in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option thetas when there are no pricing errors in the underlying asset.  Panels B, C, and 

D respectively consider annualized pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the 

correlation between innovations in underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing 

parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 = 0.03. 

         𝐾         

𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC -2.63 -3.33 -4.38 -5.37 -5.73 -5.19 -3.98 -2.62 -1.51 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 -2.36 -2.51 -2.66 -2.95 -3.22 -1.42 -0.15 0.00 0.00 

-0.75 -2.37 -2.61 -3.16 -4.05 -4.42 -3.50 -1.93 -0.75 -0.22 

-0.50 -2.48 -2.99 -3.91 -4.90 -5.26 -4.61 -3.28 -1.91 -0.94 

-0.25 -2.73 -3.51 -4.60 -5.59 -5.95 -5.44 -4.29 -2.95 -1.79 

0.00 -3.07 -4.04 -5.22 -6.19 -6.54 -6.14 -5.13 -3.85 -2.63 

0.25 -3.45 -4.56 -5.77 -6.72 -7.07 -6.74 -5.84 -4.64 -3.41 

0.50 -3.85 -5.05 -6.27 -7.20 -7.56 -7.28 -6.46 -5.34 -4.13 

0.75 -4.24 -5.51 -6.74 -7.64 -8.00 -7.77 -7.03 -5.97 -4.80 

1.00 -4.64 -5.94 -7.17 -8.05 -8.42 -8.23 -7.55 -6.55 -5.41 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 -2.37 -2.61 -3.16 -4.05 -4.42 -3.50 -1.93 -0.75 -0.22 

-0.75 -2.89 -3.78 -4.92 -5.90 -6.26 -5.80 -4.73 -3.42 -2.22 

-0.50 -3.85 -5.05 -6.27 -7.20 -7.56 -7.28 -6.46 -5.34 -4.13 

-0.25 -4.83 -6.15 -7.38 -8.25 -8.62 -8.44 -7.80 -6.83 -5.71 

0.00 -5.74 -7.12 -8.32 -9.16 -9.54 -9.43 -8.91 -8.06 -7.04 

0.25 -6.59 -7.97 -9.15 -9.97 -10.36 -10.31 -9.87 -9.13 -8.20 

0.50 -7.36 -8.75 -9.90 -10.71 -11.11 -11.11 -10.74 -10.09 -9.23 

0.75 -8.08 -9.46 -10.59 -11.39 -11.80 -11.84 -11.53 -10.95 -10.16 

1.00 -8.75 -10.12 -11.24 -12.02 -12.45 -12.51 -12.26 -11.74 -11.02 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 -7.36 -8.75 -9.90 -10.71 -11.11 -11.11 -10.74 -10.09 -9.23 

-0.75 -8.75 -10.12 -11.24 -12.02 -12.45 -12.51 -12.26 -11.74 -11.02 

-0.50 -9.97 -11.31 -12.40 -13.18 -13.63 -13.75 -13.58 -13.17 -12.55 

-0.25 -11.05 -12.38 -13.45 -14.22 -14.69 -14.86 -14.76 -14.43 -13.91 

0.00 -12.04 -13.35 -14.41 -15.18 -15.67 -15.88 -15.84 -15.58 -15.13 

0.25 -12.95 -14.24 -15.29 -16.06 -16.57 -16.82 -16.83 -16.63 -16.25 

0.50 -13.79 -15.07 -16.11 -16.89 -17.42 -17.69 -17.75 -17.60 -17.28 

0.75 -14.57 -15.85 -16.88 -17.67 -18.21 -18.52 -18.61 -18.51 -18.25 

1.00 -15.31 -16.58 -17.61 -18.41 -18.96 -19.30 -19.42 -19.37 -19.15 
 



50 

 

Table 5 

Modified call option vega 

This table presents modified Black-Scholes call option vegas in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option vegas when there are no pricing errors in the underlying asset.  Panels B, C, and 

D respectively consider annualized pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the 

correlation between innovations in underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing 

parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 = 0.03. 

         𝐾         

𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC 2.01 6.35 13.93 22.42 27.68 27.23 22.02 15.01 8.83 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 0.00 0.00 0.08 4.70 25.58 18.17 2.23 0.06 0.00 

-0.75 0.06 0.83 4.68 13.18 20.52 19.18 11.55 4.75 1.40 

-0.50 0.74 3.22 8.77 16.03 20.87 20.30 15.34 9.32 4.68 

-0.25 2.05 5.78 11.75 18.07 21.90 21.64 17.91 12.72 7.90 

0.00 3.63 8.13 14.12 19.79 23.09 23.00 19.99 15.44 10.76 

0.25 5.29 10.25 16.14 21.34 24.30 24.34 21.81 17.76 13.29 

0.50 6.94 12.17 17.91 22.76 25.50 25.63 23.46 19.80 15.57 

0.75 8.54 13.92 19.52 24.09 26.66 26.87 24.97 21.63 17.63 

1.00 10.07 15.53 20.98 25.34 27.79 28.06 26.38 23.31 19.52 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 -0.09 -1.10 -6.24 -17.57 -27.36 -25.58 -15.40 -6.33 -1.86 

-0.75 -0.77 -1.90 -3.54 -5.17 -6.13 -6.09 -5.18 -3.86 -2.56 

-0.50 0.87 1.52 2.24 2.85 3.19 3.20 2.93 2.47 1.95 

-0.25 3.60 5.43 7.23 8.65 9.45 9.55 9.02 8.04 6.80 

0.00 6.58 9.12 11.46 13.26 14.29 14.49 13.93 12.79 11.29 

0.25 9.50 12.49 15.14 17.15 18.31 18.60 18.09 16.94 15.35 

0.50 12.29 15.56 18.40 20.53 21.79 22.16 21.72 20.62 19.03 

0.75 14.92 18.38 21.34 23.55 24.88 25.33 24.97 23.94 22.39 

1.00 17.39 20.99 24.02 26.29 27.68 28.20 27.92 26.97 25.49 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 -15.64 -19.81 -23.42 -26.13 -27.73 -28.21 -27.65 -26.24 -24.22 

-0.75 -9.78 -11.81 -13.51 -14.79 -15.57 -15.86 -15.71 -15.17 -14.34 

-0.50 -4.18 -4.89 -5.49 -5.93 -6.22 -6.34 -6.32 -6.17 -5.92 

-0.25 1.00 1.15 1.27 1.36 1.42 1.45 1.45 1.43 1.38 

0.00 5.75 6.50 7.12 7.59 7.90 8.07 8.10 8.01 7.82 

0.25 10.10 11.30 12.28 13.03 13.55 13.85 13.93 13.83 13.58 

0.50 14.12 15.65 16.92 17.89 18.58 18.99 19.14 19.06 18.79 

0.75 17.85 19.65 21.13 22.29 23.11 23.63 23.85 23.82 23.56 

1.00 21.33 23.33 25.00 26.30 27.25 27.87 28.17 28.19 27.96 
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Table 6 

Modified call option rho 

This table presents modified Black-Scholes call option rhos in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option rhos when there are no pricing errors in the underlying asset.  Panels B, C, and 

D respectively consider annualized pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the 

correlation between innovations in underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing 

parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 = 0.03. 

         𝐾         

𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC 38.85 39.67 38.14 33.52 26.36 18.36 11.32 6.20 3.04 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 39.40 41.87 44.31 45.31 32.40 8.54 0.60 0.01 0.00 

-0.75 39.39 41.59 42.21 38.21 28.08 15.72 6.54 2.04 0.48 

-0.50 39.16 40.52 39.56 34.91 26.85 17.67 9.90 4.74 1.96 

-0.25 38.65 39.24 37.52 32.96 26.16 18.62 11.89 6.83 3.56 

0.00 38.00 38.02 35.94 31.63 25.69 19.20 13.22 8.42 4.99 

0.25 37.30 36.92 34.68 30.64 25.32 19.57 14.17 9.65 6.20 

0.50 36.61 35.95 33.66 29.85 25.03 19.83 14.89 10.63 7.24 

0.75 35.94 35.10 32.80 29.21 24.78 20.02 15.46 11.43 8.12 

1.00 35.30 34.34 32.06 28.67 24.56 20.17 15.91 12.10 8.89 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 39.39 41.59 42.21 38.21 28.08 15.72 6.54 2.04 0.48 

-0.75 38.34 38.61 36.68 32.24 25.91 18.94 12.61 7.68 4.30 

-0.50 36.61 35.95 33.66 29.85 25.03 19.83 14.89 10.63 7.24 

-0.25 35.00 33.99 31.73 28.43 24.46 20.22 16.11 12.39 9.23 

0.00 33.64 32.48 30.35 27.44 24.03 20.42 16.86 13.56 10.65 

0.25 32.48 31.28 29.29 26.69 23.68 20.51 17.36 14.39 11.71 

0.50 31.49 30.29 28.44 26.08 23.39 20.55 17.72 15.01 12.53 

0.75 30.63 29.46 27.73 25.57 23.13 20.55 17.97 15.49 13.17 

1.00 29.88 28.75 27.12 25.13 22.89 20.54 18.17 15.87 13.70 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 31.49 30.29 28.44 26.08 23.39 20.55 17.72 15.01 12.53 

-0.75 29.88 28.75 27.12 25.13 22.89 20.54 18.17 15.87 13.70 

-0.50 28.61 27.56 26.13 24.40 22.48 20.46 18.42 16.41 14.49 

-0.25 27.57 26.61 25.33 23.81 22.13 20.36 18.56 16.78 15.06 

0.00 26.69 25.81 24.66 23.30 21.81 20.23 18.63 17.03 15.47 

0.25 25.94 25.13 24.09 22.87 21.52 20.10 18.65 17.20 15.78 

0.50 25.28 24.54 23.58 22.48 21.26 19.97 18.65 17.32 16.02 

0.75 24.70 24.01 23.14 22.12 21.01 19.83 18.62 17.40 16.20 

1.00 24.17 23.54 22.73 21.80 20.78 19.70 18.58 17.45 16.33 
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Table 7 

Call option 𝚬 

This table presents modified Black-Scholes call option Εs in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option Εs when there are no pricing errors in the underlying asset (these are all missing 

values, since there is no Ε Greek in the Black-Scholes model) .  Panels B, C, and D respectively consider annualized pricing error 

volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the correlation between innovations in underlying 

asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 =

0.03. 

         𝐾         

𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC nan nan nan nan nan nan nan nan nan 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 0.00 0.00 -0.08 -4.70 -25.58 -18.17 -2.23 -0.06 0.00 

-0.75 -0.01 -0.14 -0.78 -2.20 -3.42 -3.20 -1.92 -0.79 -0.23 

-0.50 0.19 0.80 2.19 4.01 5.22 5.07 3.83 2.33 1.17 

-0.25 1.02 2.89 5.87 9.03 10.95 10.82 8.95 6.36 3.95 

0.00 2.42 5.42 9.42 13.20 15.39 15.33 13.33 10.30 7.17 

0.25 4.16 8.05 12.68 16.77 19.09 19.12 17.14 13.95 10.45 

0.50 6.08 10.64 15.68 19.92 22.31 22.42 20.52 17.32 13.62 

0.75 8.06 13.14 18.43 22.75 25.18 25.37 23.58 20.43 16.65 

1.00 10.07 15.53 20.98 25.34 27.79 28.06 26.38 23.31 19.52 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 0.09 1.10 6.24 17.57 27.36 25.58 15.40 6.33 1.86 

-0.75 2.82 6.98 12.99 18.96 22.49 22.32 18.99 14.14 9.38 

-0.50 6.08 10.64 15.68 19.92 22.31 22.42 20.52 17.32 13.62 

-0.25 8.75 13.19 17.55 21.00 22.94 23.19 21.90 19.52 16.53 

0.00 10.96 15.20 19.11 22.10 23.82 24.14 23.22 21.32 18.82 

0.25 12.86 16.90 20.49 23.20 24.78 25.16 24.47 22.92 20.77 

0.50 14.52 18.39 21.75 24.26 25.75 26.19 25.67 24.37 22.49 

0.75 16.02 19.74 22.92 25.29 26.73 27.21 26.82 25.71 24.05 

1.00 17.39 20.99 24.02 26.29 27.68 28.20 27.92 26.97 25.49 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 15.64 19.81 23.42 26.13 27.73 28.21 27.65 26.24 24.22 

-0.75 16.85 20.33 23.27 25.46 26.82 27.32 27.05 26.13 24.69 

-0.50 17.75 20.79 23.32 25.21 26.42 26.94 26.85 26.21 25.14 

-0.25 18.50 21.22 23.48 25.18 26.30 26.84 26.86 26.42 25.60 

0.00 19.15 21.65 23.72 25.29 26.34 26.90 27.01 26.70 26.06 

0.25 19.75 22.08 24.00 25.48 26.49 27.07 27.23 27.04 26.53 

0.50 20.30 22.50 24.32 25.72 26.71 27.29 27.51 27.40 27.01 

0.75 20.83 22.92 24.65 26.00 26.97 27.57 27.83 27.79 27.48 

1.00 21.33 23.33 25.00 26.30 27.25 27.87 28.17 28.19 27.96 
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Table 8 

Call option 𝚸 

This table presents modified Black-Scholes call option Ρs in Panel B-D when the underlying asset contains pricing errors.  Panel 

A contains the baseline Black-Scholes call option Ρs when there are no pricing errors in the underlying asset (these are all missing 

values, since there is no Ρ Greek in the Black-Scholes model) .  Panels B, C, and D respectively consider annualized pricing error 

volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the correlation between innovations in underlying 

asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing parameters are: 𝑆 = 100, 𝑏𝑛 = 0.15, 𝑇 = 0.5, 𝑟 =

0.03. 

         𝐾         

𝜌𝑛,𝜀  80 85 90 95 100 105 110 115 120 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC nan nan nan nan nan nan nan nan nan 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 0.00 0.00 0.02 1.41 7.68 5.45 0.67 0.02 0.00 

-0.75 0.01 0.17 0.94 2.64 4.10 3.84 2.31 0.95 0.28 

-0.50 0.11 0.48 1.31 2.40 3.13 3.04 2.30 1.40 0.70 

-0.25 0.25 0.69 1.41 2.17 2.63 2.60 2.15 1.53 0.95 

0.00 0.36 0.81 1.41 1.98 2.31 2.30 2.00 1.54 1.08 

0.25 0.45 0.88 1.38 1.83 2.08 2.09 1.87 1.52 1.14 

0.50 0.52 0.91 1.34 1.71 1.91 1.92 1.76 1.48 1.17 

0.75 0.57 0.93 1.30 1.61 1.78 1.79 1.66 1.44 1.18 

1.00 0.60 0.93 1.26 1.52 1.67 1.68 1.58 1.40 1.17 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 0.03 0.41 2.34 6.59 10.26 9.59 5.77 2.37 0.70 

-0.75 0.77 1.90 3.54 5.17 6.13 6.09 5.18 3.86 2.56 

-0.50 1.30 2.28 3.36 4.27 4.78 4.80 4.40 3.71 2.92 

-0.25 1.54 2.33 3.10 3.71 4.05 4.09 3.87 3.44 2.92 

0.00 1.64 2.28 2.87 3.32 3.57 3.62 3.48 3.20 2.82 

0.25 1.68 2.20 2.67 3.03 3.23 3.28 3.19 2.99 2.71 

0.50 1.68 2.12 2.51 2.80 2.97 3.02 2.96 2.81 2.59 

0.75 1.66 2.04 2.37 2.62 2.76 2.81 2.77 2.66 2.49 

1.00 1.63 1.97 2.25 2.46 2.60 2.64 2.62 2.53 2.39 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 3.35 4.24 5.02 5.60 5.94 6.04 5.92 5.62 5.19 

-0.75 3.26 3.94 4.50 4.93 5.19 5.29 5.24 5.06 4.78 

-0.50 3.13 3.67 4.11 4.45 4.66 4.75 4.74 4.63 4.44 

-0.25 3.00 3.44 3.81 4.08 4.26 4.35 4.36 4.28 4.15 

0.00 2.87 3.25 3.56 3.79 3.95 4.04 4.05 4.01 3.91 

0.25 2.76 3.08 3.35 3.55 3.70 3.78 3.80 3.77 3.70 

0.50 2.65 2.94 3.17 3.35 3.48 3.56 3.59 3.57 3.52 

0.75 2.55 2.81 3.02 3.18 3.30 3.38 3.41 3.40 3.37 

1.00 2.46 2.69 2.88 3.04 3.14 3.22 3.25 3.25 3.23 
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Table 9 

Probability of default 

This table presents modified Merton (1974) model probabilities of default (𝑁(−𝑑2)) in Panel B-D when the underlying asset 

contains pricing errors.  Probabilities are presented in basis points, where ̀ 1 bp =
1%

100
.  Panel A contains the baseline Merton model 

probabilities of default when there are no pricing errors in the underlying asset.  Panels B, C, and D respectively consider annualized 

pricing error volatilities of 𝑏𝑛,𝜀 = 0.10, 𝑏𝑛,𝜀 = 0.25, and 𝑏𝑛,𝜀 = 0.50, respectively.  𝜌𝑛,𝜀 is the correlation between innovations in 

underlying asset price and its pricing error (𝜌𝑛,𝜀 =
ℂ𝕍{𝑑𝑆,𝑑𝜀}

√𝕍{𝑑𝑆}√𝕍{𝑑𝜀}
).  The remaining pricing parameters are: 𝐴 = 100, 𝑏𝑛 = 0.45, 𝑇 =

0.5, 𝑟 = 0.03, 𝑏𝑛,𝐴 =
𝑏𝑛

𝑁(𝑑̂1)

(𝐴−𝐷)

𝑉
, 𝑏̃𝑛,𝐴 =

𝑏𝑛

𝑁(𝑑̃1)

(𝐴−𝐷)

𝑉
. 

 𝐷 

𝜌𝑛,𝜀  80 85 90 95 
 

Panel A: Black-Scholes (𝑏𝑛,𝜀 = 0) 

BSC 12.562 24.950 41.186 38.111 
 

Panel B: 𝑏𝑛,𝜀 = 0.10 

-1.00 0.194 0.719 2.087 2.459 

-0.75 1.040 3.011 6.921 7.310 

-0.50 3.441 8.315 16.260 16.037 

-0.25 8.394 17.720 30.813 29.047 

0.00 16.715 31.800 50.618 46.263 

0.25 28.897 50.637 75.268 67.312 

0.50 45.099 73.964 104.128 91.678 

0.75 65.220 101.304 136.487 118.805 

1.00 88.979 132.094 171.649 148.160 
 

Panel C: 𝑏𝑛,𝜀 = 0.25 

-1.00 0.000 0.000 0.000 0.000 

-0.75 0.009 0.052 0.233 0.346 

-0.50 1.618 4.381 9.483 9.756 

-0.25 15.069 29.120 46.965 43.115 

0.00 51.382 82.658 114.561 100.441 

0.25 111.284 159.966 202.632 173.973 

0.50 189.298 252.423 301.557 256.337 

0.75 279.010 352.778 404.630 342.370 

1.00 375.157 456.010 507.724 428.826 
 

Panel D: 𝑏𝑛,𝜀 = 0.50 

-1.00 0.000 0.000 0.000 0.000 

-0.75 0.094 0.388 1.248 1.546 

-0.50 24.391 43.841 66.549 59.900 

-0.25 135.605 189.506 234.794 200.748 

0.00 310.560 387.058 439.138 371.259 

0.25 507.012 592.816 641.284 541.555 

0.50 702.205 788.658 828.438 700.995 

0.75 886.766 968.907 997.880 846.847 

1.00 1057.679 1132.831 1150.360 979.291 
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Figure 1 

European call price difference 

This figure plots the surface of the difference 𝑐̃ − 𝑐𝐵𝑆 between the European call option price with pricing errors in the underlying 

asset and the Black-Scholes European call option price.  The parameters used for the figure are: 𝑆(𝑡) = 100, 𝑟 = 0.03, 𝑏 = 0.15, 

𝑏𝜀 = 0.10, and 𝜌𝜀 = 0.  
𝑋

𝑆
 denotes option moneyness and 𝜏 = 𝑇 − 𝑡 denotes the time-to-maturity in years. 
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(a) 

 
(b) 

Figure 2 

𝚬𝒄 and 𝚸𝒄 Greeks 

This figure plots the European call option price sensitivity to the pricing error volatility Ε𝑐 =
𝜕𝑐

𝜕𝑏𝜀
 in Panel (a) and the European call 

option price sensitivity to the correlation between pricing error innovations and underlying asset true price innovations Ρ𝑐 =
𝜕𝑐

𝜕𝜌𝜀
 in 

Panel (b).  The parameters used for the figure are: 𝑆(𝑡) = 100, 𝑟 = 0.03, 𝑏 = 0.15, 𝑏𝜀 = 0.10, and 𝜌𝜀 = 0.  
𝑋

𝑆
 denotes option 

moneyness and 𝜏 = 𝑇 − 𝑡 denotes the time-to-maturity in years. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 3 

Option Greek differences 

This figures presents the difference between the modified European call option greeks when the underlying asset has pricing errors 

and standard Black-Scholes European call option greeks.   Δ is in Panel (a), Γ is in Panel (b),  Θ is in Panel (c), 𝑣 is in Panel (d), 

and 𝜌 is in Panel (e).  Definitions of the greeks are provided in Proposition 3.  The parameters used for the figure are: 𝑆(𝑡) = 100, 

𝑟 = 0.03, 𝑏 = 0.15, 𝑏𝜀 = 0.10, and 𝜌𝜀 = 0.  
𝑋

𝑆
 denotes option moneyness and 𝜏 = 𝑇 − 𝑡 denotes the time-to-maturity in years. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 

Risk neutral density comparative statics 

This figure presents the European call option implied risk neutral probability density (RND) as a function of the underlying asset’s 

pricing error volatility in Panel (a) and the associated risk neutral cumulative probability density (CRND) in Panel (c).  The 

European call option implied risk neutral probability density (RND) as a function of the correlation between pricing errors and 

underlying asset innovations (𝜌𝑛,𝜀) is plotted in Panel (b) and the associated risk neutral cumulative probability density (CRND) in 

Panel (d).  The parameters used for the figure are: 𝑆(𝑡) = 100, 𝑟 = 0.03, 𝑏 = 0.15, 𝑇 = 1, 𝑏𝜀 ∈ {0, 0.10, 0.25, 0.50}. 𝜌𝑛,𝜀 = 0 in 

Panels (a) and (c).  𝑆𝑇 denotes the terminal stock price at expiration.  The RND and CRND are, respectively, calculated as: 

𝑅𝑁𝐷(𝑋) =
𝑁′(𝑑̃2)

𝑏𝑌√𝜏𝑋
, 𝐶𝑅𝑁𝐷(𝑋) = 1 − 𝑁(𝑑̃2), 𝑑̃2 =

ln
𝑆
𝑋

+ (𝑟 −
𝑏𝑌

2

2
) 𝜏

√𝑏𝑌
2𝜏

, 

where 𝑏𝑌
2 = 𝑏2 + 𝑏𝜀

2 + 𝜌𝑛,𝜀𝑏𝑛𝑏𝑛,𝜀.  Note the differing y-axes in Panels (a) and (b). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 

American option price comparative statics 

This figure plots the American option prices when the underlying asset contains pricing errors.  As a function of the underlying 

asset pricing error volatility (𝑏𝜀), American call option values are plotted in Panel (a) and American put option values are plotted 

in Panel (b).  As a function of the correlation between pricing errors and underlying asset price innovations (𝜌𝑛,𝜀), American call 

option values are plotted in Panel (c) and American put option values are plotted in Panel (d)  The parameters used for the figure 

are: 𝑆(𝑡) = 100, 𝑋 = 100, 𝑟 = 0.03, 𝑏 = 0.15, 𝑇 = 1, 𝑏𝜀 ∈ {0, 0.10, 0.25, 0.50}.  𝜌𝑛,𝜀 = 0 in Panels (a) and (b).  𝑆𝑇 denotes the 

terminal stock price at expiration.  Note the different x-axis (𝑆𝑇) in Panel (d). 


